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SUMMARY

The class of computational problems I consider in this thesis share the common

trait of requiring consideration of pairs (or higher-order tuples) of data points. For

problems modeling pairwise interactions, we consider accelerating the operations on N

by N matrices of the form: K = k(xi, xj)i,j where k(·, ·) is the function that outputs

a real value given xi and xj from the data set. I focus on the problem of kernel

summation operations ubiquitous in many data mining and scientific algorithms.

In machine learning, kernel summations appear in popular kernel methods which

can model nonlinear structures in data. Kernel methods include many non-parametric

methods such as kernel density estimation, kernel regression, Gaussian process re-

gression, kernel PCA, and kernel support vector machines (SVM). In computational

physics, kernel summations occur inside the classical N -body problem for simulating

positions of a set of celestial bodies or atoms.

This thesis attempts to marry, for the first time, the best relevant techniques in

parallel computing, where kernel summations are in low dimensions, with the best

general-dimension algorithms from the machine learning literature. We provide a

unified, efficient parallel kernel summation framework that can utilize:

1. Various types of deterministic and probabilistic approximations that may be

suitable for both low and high-dimensional problems with a large number of

data points.

2. Indexing the data using any multi-dimensional binary tree with both distributed

memory (MPI) and shared memory (OpenMP/Intel TBB) parallelism.
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3. A dynamic load balancing scheme to adjust work imbalances during the com-

putation.

I will first summarize my previous research in serial kernel summation algorithms.

This work started from Greengard/Rokhlin’s earlier work on fast multipole methods

for the purpose of approximating potential sums of many particles. The contribu-

tions of this part of this thesis include the followings: (1) reinterpretation of Green-

gard/Rokhlin’s work for the computer science community; (2) the extension of the

algorithms to use a larger class of approximation strategies, i.e. probabilistic error

bounds via Monte Carlo techniques; (3) the multibody series expansion: the general-

ization of the theory of fast multipole methods to handle interactions of more than two

entities; (4) the first O(N) proof of the batch approximate kernel summation using

a notion of intrinsic dimensionality. Then I move onto the problem of paralleliza-

tion of the kernel summations and tackling the scaling of two other kernel methods,

Gaussian process regression (kernel matrix inversion) and kernel PCA (kernel matrix

eigendecomposition).

The artifact of this thesis has contributed to an open-source machine learning

package called MLPACK which has been first demonstrated at the NIPS 2008 and

subsequently at the NIPS 2011 Big Learning Workshop. Completing a portion of

this thesis involved utilization of high performance computing resource at XSEDE

(eXtreme Science and Engineering Discovery Environment) and NERSC (National

Energy Research Scientific Computing Center).
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CHAPTER I

INTRODUCTION

This thesis focuses on scaling key bottleneck inner-loop computations on distributed

datasets. Data may be distributed because: 1) it is more cost-effective to distribute

data on a network of less powerful nodes than storing everything on one powerful

node; 2) it allows distributed query processing for high scalability. Each process

(which may/may not be on the same node) owns a subset of data and needs to initi-

ate communications (i.e. MPI, memory-mapped files) when it needs a remote piece

of data owned by another process. Many machine learning and scientific simulations

require running the computations on multiple parameter settings. Especially, the

number of points can be prohibitively large so that one CPU cannot handle the com-

putation in a tractable amount of time. Unlike the usual three-dimensional setting in

N -body simulations, D may be as high as or more than 1000 in many machine learning

methods. My thesis attempts to provide a general framework that encompasses ac-

celeration techniques for a wide range of both low-dimensional and high-dimensional

problems with a large number of data points.

1.1 What This Thesis is About

The class of computational problems I consider in my thesis share the common trait of

requiring consideration of pairs (or higher-order tuples) of data points. For problems

modeling pairwise interactions, we consider accelerating the operations on N by N

matrices of the form: K = {k(xi,xj)}i,j where k(·, ·) is the function that outputs a

real value given xi and xj from the data set. I focus on the following three fundamental

linear algebraic operations ubiquitous in many data mining and scientific algorithms:
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Figure 1: Left: an example two-dimensional point set. Right: the kernel matrix

formed by the point set shown in the left using the Gaussian kernel k(x, y) = e
−||x−y||2

2h2 .

1. Kernel summations: ∀x1 ∈ X1,
∑

x2∈X2

k(x1,x2)

2. Solving a linear system involving a kernel matrix: K−1y

3. Eigendecomposing matrices: K = UΣUT

In machine learning, the three operations above appear in widely used kernel meth-

ods which can model nonlinear structures in data and include many non-parametric

methods such as kernel density estimation [145], kernel regression [138], Gaussian pro-

cess regression [153], kernel PCA [164], and kernel support vector machines (SVM) [165].

In computational physics, kernel summations occur inside the classical N -body prob-

lem for simulating positions of a set of celestial bodies or atoms.

There are two main issues that one needs to address for developing scaling the

computations above on a distributed setting. First, acceleration is generally feasible

only by trading accuracy for speed. Therefore, it is very crucial for researchers and

scientists to be able to both quantify and control approximation errors. Secondly,

achieving scalability in a distributed setting requires additional considerations such

as: 1) minimizing inherently serial portions of the algorithm (Amdahl’s law); 2)

minimizing the time spent in critical sections; 3) overlapping communication and

2
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Figure 2: If the kernel is a probability density function, then we can do density
estimation. Kernel density estimation [145] involves the computation of weighted
column average of the kernel matrix

∑
ri∈R

wik(q, ri) = Kw .

computation as much as possible. In my thesis, I utilize 1) OpenMP for shared-

memory parallelism and 2) MPI for distributed-memory parallelism; it is also possible

to utilize (optionally) the CUDA programming framework for harnessing massive

parallelism in General Purpose Graphics Processing Units (GPGPUs) available on

today’s commodity machines but we will not explore it in this thesis.

The overall framework is derived in [117]. My thesis attempts to marry, for the first

time, the best relevant techniques in parallel computing, where kernel summations

are in low dimensions, with the best general-dimension algorithms from the machine

learning literature.

Thesis Statement: “Utilizing the best general-dimension algorithms, approxima-

tion methods with error bounds, the distributed and shared memory parallelism can

help scale kernel methods.”

In this thesis, I provide a unified, efficient parallel kernel summation framework that

can utilize:

1. Various types of deterministic and probabilistic approximations that may be

suitable for both low and high-dimensional problems with a large number of

3



data points.

2. Indexing the data using any multi-dimensional binary tree with both distributed

memory (MPI) and shared memory (OpenMP) parallelism.

3. A dynamic load balancing scheme to adjust work imbalances during the com-

putation.

The framework provides a general approach for accelerating the computation of many

popular machine learning methods. The motivation is similar to that of [119] and [98].

In [119], a general framework was developed to support various types of scientific

simulations. In [98], several graph mining operations (PageRank, Random Walk with

Restart (RWR), diameter estimation, and connected components) was parallelized

via an implementation of Generalized Iterated Matrix-Vector multiplication (GIM-V)

on HADOOP platform [21]. This thesis is based on parallelization of the previously

successful generalized N-body framework [78, 128] which is similar to the well-known

spatial join algorithms [64, 26] and is an extension of the parallelization work in [25].

The techniques analyzed and developed in this thesis have wide applications in per-

forming efficient, accurate computation in molecular dynamics, statistical modeling,

and astrophysical simulations. I utilize various techniques from numerical optimiza-

tions, approximation theory, computational geometry, and high-performance comput-

ing to develop scalable implementations. The components of the overall framework

in my thesis are the followings:

Reinterpretation of Greengard and Rokhlin’s Work: Greengard and Rokhlin’s

seminar work on the Fast Multipole Methods provided the foundation for kernel sum-

mation methods using hierarchical data structures. However, the theorem-proof pre-

sentation of their proposed approximation schemes is hard for non-experts to under-

stand. In my thesis, I re-cast Greengard and Rokhlin’s derivations in terms of the
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Figure 3: A kernel k is a similarity function. If it in addition satisfies the Mercer’s
conditions (K � 0), then it corresponds to a dot-product: k(xi,xj) = φ(xi)

Tφ(xj).

more general framework called generalized N-body framework [78].

High-dimensional Kernel Summations: Classical approaches of accelerating ker-

nel sums using hierarchical data structures do not scale to higher-dimensions. Due to

the curse of dimensionality, distances between all pairs of points in high dimensions

concentrate around one value and hierarchical data structures such as kd-trees and

metric-trees adapt poorly to underlying data. High-dimensional kernel summations

need to be dealt with in kernel principal component analysis and kernel support vector

machines.

None of the previous approaches for kernel summations addresses the issue of

reducing the computational cost of each distance computation which incurs O(D)

cost. However, the intrinsic dimensionality d of most high-dimensional datasets is

much smaller than the explicit dimension D (that is, d� D). In my thesis, I provide

two approaches for handling high-dimensional kernel summations. First, I extend

the original fast multipole-type methods to use approximation schemes with both

hard and probabilistic error. Second, I propose a new data structure called subspace

tree which maps each data point in the node to its lower dimensional mapping as

determined by any linear dimension reduction method such as PCA. This new data

structure is suitable for reducing the cost of each pairwise distance computation, the
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Figure 4: Top: Eigendecomposition of a kernel matrix into a set of kernel eigen-
vectors and kernel eigenvalues. Bottom: Projection of the MNIST [111] training
dataset onto its first two kernel principal components.

most dominant cost in many kernel methods.

Higher-order Generalization of Fast Multipole Methods (Chapter 7): I

generalize the theory of fast multipole methods to handle interactions of more than

two entities, so-called multibody series expansion. A three-body potential function can

account for interactions among triples of particles which are uncaptured by pairwise

interaction functions such as Coulombic or Lennard-Jones potentials. Likewise, a

multibody potential of order n can account for interactions among n-tuples of particles

uncaptured by interaction functions of lower orders. To date, the computation of

multibody potential functions for a large number of particles has not been possible
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Figure 5: Inverting the kernel matrix K−1. An example application includes the
well-known Gaussian process regression.

due to its O(Nn) scaling cost.

Φ(x; X× · · · ×X︸ ︷︷ ︸
(n−1) copies

) =
∑

xi2
∈X\{x}

∑
xi3
∈X\{x}
i2<i3

· · ·
∑

xin∈X\{x}
in−1<in

k(x,xi2 · · · ,xin) (1.1.1)

For the first time, I provide a fast Barnes-Hut type algorithm for efficiently approxi-

mating multibody potentials. My approach guarantees a user-specified bound on the

absolute or relative error in the computed potential. I provide speedup results on

a three-body dispersion potential, the Axilrod-Teller potential [9]. This work is in

submission to a journal in computational physics community [116].

Runtime analysis of Kernel Summations: Previous runtime analysis of the

pairwise kernel summation method used the assumption of uniformity of the data

distribution. I use a new new notion of distribution-dependent measure called the

expansion constant, which has been successfully used in proving the O(logN) runtime

7
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Figure 6: Storing the kernel matrix in the main memory for even a small number
of points is expensive. For example, the MNIST [111] handwritten digit recognition
data of sixty-thousand 28× 28 images requires over 28 GB to store the kernel matrix
in double precision.

of the nearest neighbor search of a single query point [20]. I provide the first rigorous

proof of the linear time complexity of the approximate kernel summation. This is not

included in the thesis but published in [151].

1.2 Open-source Machine Learning: MLPACK

I have been involved in an open-source development of machine learning package

called MLPACK aimed for large-scale data analysis. As both a numerical software

developer and researcher, I believe that writing and sharing robust code is imperative

for the advancement of science. For example, well-documented source code for Fast

Multipole Methods is hard to find. Therefore, I have made my C++ implementa-

tion available as a part of MLPACK for other researchers. Maintaining MLPACK

required utilizing many open source software for scientific computing, such as Trili-

nos [93], Armadillo linear algebra library [163], the GNU Scientific Library [49] and

Boost Library [107]. MLPACK has been first demonstrated at the NIPS 2008 [24]

and subsequently at the NIPS 2011 Big Learning Workshop [53]. I have utilized
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high performance computing resources such as XSEDE (eXtreme Science and Engi-

neering Discovery Environment) and NERSC (National Energy Research Scientific

Computing Center) for completing a portion of this thesis.

1.3 Structure of This Thesis and Notations

This thesis is organized into the following parts:

• Chapter 2 first defines the general class of kernel summation problems and

introduces preliminary materials on data structures, algorithmic framework,

and approximation methods.

• Chapter 3 elucidates the mathematical machinery underneath the popular fast

multipole methods using figures and algorithms. As a running example, it de-

rives for the first time a hierarchical version of the famous fast Gauss transform

using the O(pD) Cartesian expansion.

• Chapter 4 derives another hierarchical version of the fast Gauss transform using

the O(Dp) Cartesian expansion.

• Chapter 5 proposes two strategies for scaling kernel summations to higher di-

mensions using a Monte Carlo sampling and a data structure that is able to

capture dominant subspace information.

• Chapter 6 provides an application of fast pairwise kernel summations to mean

shift, a popular nonparametric clustering. Nonparametric clustering is then

used for the task of image segmentation.

• Chapter 7 for the first time extends the pairwise kernel summation framework

to a higher-order kernel summation. Based on this new derivations, this chapter

provides a fast hierarchical algorithm for the problem of multibody potential

9



summation for accurately modeling higher-order interactions in molecular dy-

namics.

• Chapter 8 provides the parallel extension for kernel summations. It introduces

the method for building a large-scale distributed multidimensional tree and the

distributed kernel summation framework.

• Chapter 9 introduces the distributed averaging framework. It then shows how

to combine it with the random feature extraction method to create fast kernel

eigendecomposition and kernel inversion methods.

• Chapter 10 summarizes the contributions and outlines some possible future

research directions.

Throughout this thesis, we use these common sets of notations:

• (Normal Distribution). This is denoted by N (µ,Σ).

• (Matrix, Vector, Scalar). We denote a matrix by a bold uppercase alphabet

(e.g. A) and a vector by a bold lowercase alphabet (e.g. a). A scalar is always

an italicized lowercase or uppercase alphabet (e.g. a or A). Likewise, we denote

a function by its output. For example, for a function whose output is a matrix,

we denote it by a bold uppercase alphabet (e.g. F : RD ×RD → Ra ×Rb). For

a function outputting a vector, f : RD×RD → R. Lastly, a function outputting

a scalar, f : RD × RD → R.

• (Vector Component). For a given vector v ∈ Rk, we access its d-th compo-

nent by v[d] where 1 ≤ d ≤ k (i.e. 1-based index).

• (Multi-index Notation). Throughout this paper, we will be using the multi-

index notation. A D-dimensional multi-index α is a D-tuple of non-negative

integers and will be denoted using a bold lowercase Greek alphabet. For any

D-dimensional multi-indices α, β and any x ∈ RD,

10



|α| = α[1] +α[2] + · · ·+α[D]

α! = (α[1])!(α[2])! · · · (α[D])!

xα = (x[1])α[1](x[2])α[2] · · · (x[D])α[D]

Dα = ∂
α[1]
1 ∂

α[2]
2 · · · ∂α[D]

D

α+ β = (α[1] + β[1], · · · ,α[D] + β[D])

α− β = (α[1]− β[1], · · · ,α[D]− β[D]) for α ≥ β.

where ∂i is a i-th directional partial derivative. Define α > β if α[d] > β[d],

and α ≥ p for p ∈ Z+∪{0} if α[d] ≥ p for 1 ≤ d ≤ D (and similarly for α ≤ p).

• (Set of Points). Each of these is denoted by a bold upper case alphabet. For a

multidimensional dataset, this can be represented as a matrix P = {p1, · · · ,pN}

where each pi ∈ RD is a column vector of P.

• (Distance between a Pair of Points). || · || is assumed to be the Euclidean

metric unless specified otherwise.

• (Size of a Point Set). Given a set S, it size is denoted by |S|.

• (Dimensionality). We reserve the italicized uppercase D for the dimension-

ality of the problem.

• (Probability Guarantee). We use the unbold Greek alphabet α.

• (Reference Set/Query Set vs Training Set/Test Set vs Source Set/Target

Set). Following [78, 80, 77], we use the terms reference set and training set and

source set interchangably. Likewise, the terms query set and test set and target

set have the same meaning. The query set is denoted as Q and the reference

set is denoted as R.

• (Subset of a Point Set). Given a point set D, denote any of its subset by

Dsub ⊂ D. Dsub contains a subset of the columns of D.
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• (A Tree Node). A tree node represents a subset of a point set represented by

the root node. Hence, we use the same notation as the previous.

• (Representative Point of a Tree Node). Usually a geometric center is used

but any point inside the bounding primitive of a tree node is chosen as well.

For the tree node P, this is denoted as cP.

• (Child Nodes of an Internal Tree Node). Given a node N, denote its left

and right child nodes by NL and NR respectively.
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CHAPTER II

PRELIMINARY MATERIALS

We first define a general class of problems called generalized N-body problems [78].

Definition 2.0.1. A generalized N-body problem is a computational problem over a

set of point sets X1 · · · ,Xn and associative, commutative operators
⊗

1 , · · · ,
⊗

n and

f : X1 × · · · ×Xn → R:

ψ(X1, . . . ,Xn) =
⊗

1
x1∈X1

· · ·
⊗

n
xn∈Xn

f(x1, . . . ,xn) (2.0.1)

subject to decomposability requirement for 1 ≤ i ≤ n,

ψ(. . . ,Xi, . . .) = ψ(. . . ,Xi
L, . . .)⊗i ψ(. . . ,Xi

R, . . .). (2.0.2)

A generalized N-body problem is monochromatic if X1 = · · · = Xn. Otherwise it is a

multi-chromatic problem.

We note that the associative, commutative properties of the operators
⊗

1, · · · ,
⊗

n

let us re-order computations efficiently without changing the results (up to numerical

precision) and the decomposability property lets us decompose the problem using a

spatial decomposition of each point set X1, · · · ,Xn.

In this thesis, we restrict ourselves to a subset of this rather large class of problems

called kernel summation problems. We start by defining the following useful operator:

Definition 2.0.2. A map operator is an operator over a given set X and outputs a

vector whose component corresponds to each element xi ∈ X. That is:

map
xi∈X

f(xi,Y) =


f(x1,Y)

...

f(x|X|,Y)

 (2.0.3)

13



We are now ready to define the general class of kernel summation problems1.

Definition 2.0.3. A kernel summation problem is a computational problem over a

set of point sets X1 · · · ,Xn and k : X1 × · · · ×Xn → R:

Φ(X1 × · · · ×Xn) = map
xi1
∈X1

∑
xi2
∈X2

· · ·
∑

xin∈Xn

k(xi1 , · · · ,xin) (2.0.4)

Denote each scalar component of Φ(X1 × · · · × Xn) by fixing the argument corre-

sponding to the first set X1: Φ(x1; X2 × · · · ×Xn).

The specific kernel summation problems we deal with in this thesis include:

1. Pairwise kernel summations (Chapter 3 and Chapter 5):

Φ (Q×R) = map
qi∈Q

∑
rj∈R

wjk(qi, rj)

 (2.0.5)

2. Multibody potential summations (Chapter 7):

Φ(X× · · · ×X︸ ︷︷ ︸
n copies

) = map
x∈X

∑
xi2
∈X\{x}

∑
xi3
∈X\{x}
i2<i3

· · ·
∑

xin∈X\{x}
in−1<in

k(x,xi2 · · · ,xin)

Later we show that the problems of kernel matrix eigendecomposition and inversion

can be reduced to the problem of kernel summations (see Chapter 9).

2.1 Multidimensional Trees

In this thesis, we focus on hierarchical methods because: 1) it is a natural framework

to control approximation in a varying degree of resolution; 2) the specialized accel-

eration techniques can always be used as a base case. We utilize a hierarchical data

structure called multidimensional tree to form hierarchical groupings of points based

on their locations. We use a variant of kd-trees [15] using the recursive procedure

shown in Algorithm 2.2.1. Initially, the algorithm starts with P = X (the entire point

1Note that [94] defines another general class of nested summation problems.

14
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Figure 7: kd-tree of a two-dimensional point set. At each level, the bounding box is
split in half along the widest dimension. The solid points denote the points owned
by each node. At each leaf node, we can enumerate each point with its depth-first
rank. The minimum depth-first rank (inclusive) and the maximum depth-first rank
(exclusive) is shown for each node.

set). We split a given set of points along the widest dimension of the bounding hyper-

rectangle into two equal halves at the splitting coordinate such that the resulting two

subsets PL and PR are disjoint2 and P = PL ∪ PR. We continue splitting until the

number of points is below some user-defined threshold called the leaf threshold. If

the number of points owned by a node exceeds the leaf threshold, then it is called

an internal node. Otherwise it is called a leaf node. Assuming that each split on a

level results in the equal number of points on the left subset and the right subset

PL and PR respectively, the runtime cost is O(|X| log |X|). We note that the cost of

building a kd-tree is negligible compared to the computations we perform using it.

Other multidimensional trees include octrees, kd-trees [15], and cover-trees [20]. Note

that Algorithm 2.2.1 is a serial algorithm and we will discuss the parallel construction

algorithm in Chapter 8.

Cached Sufficient Statistics. In addition to the bound information, each node

is decorated with statistics about the points underneath it. These are called cached

sufficient statistics [133], and some examples include:

2Spill-trees [121] do not obey this property and have been used for speeding up high-dimensional
nearest neighbor searches.
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Algorithm 2.2.1 BuildKdTree(P): builds a kd-tree from P (see Figure 7).

if |P| is above the leaf threshold then
Find the widest dimension d of the bounding box of P.
Choose an axis-aligned split s along d.
Split P = PL ∪PR where PL = {x ∈ P | x[d] ≤ s} and PR = P\PL.
BuildKdTree(PL), BuildKdTree(PR)
Form far-field moments of P by translating far-field moments of PL and PR.

else
Form far-field moments of P.

Initialize summary statistics of P.

1. Covariance, principal eigendirections and eigenvectors of the owned points.

2. Far-field moments in fast multipole methods and their variants [78, 80, 82, 77,

83, 84, 85, 86].

We can efficiently perform these statistics on each leaf node and recursively translating

the statistics of the children node for an internal node. See Figure 8 and Section 3.1.3.

2.2 Generalized N-body Framework

The general framework for computing Equation (2.0.1) is formalized in [78, 82,

80, 77]. This approach consists of the following steps:

1. Build a spatial tree (such as kd-trees) for each of the particle sets X1, · · · ,Xn

and their cached sufficient statistics (Bottom-up phase)3

2. Perform a multi-tree traversal over n-tuples of nodes (Approximation phase).

3. Pre-order traverse the tree and propagate unincorporated bound changes down-

ward (Top-down phase).

The generalized N -body framework using the multi-tree traversal is shown in

Algorithm 2.2.2, (called by setting each Pi = X for 1 ≤ i ≤ n), a recursive function

3It is possible to build a single tree on the union of the particle sets X1, · · · ,Xn (as done in the
FMM literature) and apply the same framework, but we do not consider this approach since the
extension is trivial.
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Figure 8: Efficient bottom-up translation of cached sufficient statistics. This includes
the far-to-far translation operator in fast multipole method literature.

that allows us to consider the n-tuples formed by choosing each xi from Pi; we can

gain efficiency over the naive enumeration of the n-tuples by using the bounding box

and the moment information stored in each Pi. One such information is the distance

bound computed using the bounding box (see Figure 10).

CanSummarize function tests whether Φ(X1, . . . ,Xn) can be approximated

within the error tolerance determined by the algorithm. If the approximation is

not possible, then the algorithm continues to consider the data at a finer granularity;

it chooses an internal node Pk (typically the one with the largest diameter) to split

among {Pi}ni=1. Before recursing to two sub-calls in Line 9 and Line 10 of Algo-

rithm 2.2.2, the algorithm can optionally push quantities from a node that is being

split to its child nodes (see Line 8 and Figure 16). After returning from the recursive

calls, the node that was just split can refine summary statistics based on the results

accumulated on its child nodes (see Line 11 and Figure 17).

The basic idea is to terminate the recursion as soon as possible, i.e. by consid-

ering a tuple of large subsets and avoiding the number of exhaustive leaf-leaf-leaf
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Figure 9: Efficient tow-down propagation. This includes the local-to-local translation
operator in fast multipole method literature.

computations. We note that the CanSummarize and Summarize functions effec-

tively replace unwieldy interaction lists used in FMM algorithms. Interaction lists in

n-tuple interaction, if naively enumerated, can be large depending on the function k

and the dimensionality D of the problem, whereas the generalized N -body approach

can handle a wide spectrum of problems without this drawback.

2.3 Approximation Methods

We first focus on the pairwise kernel summation form (n = 2) whose canonical form

is given in Equation 2.0.5. The computation tree for a pairwise problem is shown

in Figure 11. For a given level, some computations are independent; some have to

be computed sequentially. The key question is how to specify the CanSummarize

function so that the recursive call terminates at a higher pair Qsub ×Rsub .

The key idea is to exploit the properties of the function k and compress the point

sets Qsub and Rsub . These are roughly divided into the followings:

1. k has a finite extent: a kernel is zero outside a certain domain. An example

would be the Epanechnikov kernel k(q, r) = max
{

0, 1− ||q−r||2
h2

}
.

18



d l HPi ,P j L

P jPi

P j

d
u HPi ,P jL

Pi

Figure 10: The lower and upper bound on pairwise distances between the points
contained in a pair of nodes.

Algorithm 2.2.2 MultiTree({Pi}ni=1): The canonical multi-tree algorithm.

if CanSummarize({Pi}ni=1) (Try approximation.) then
Summarize({Pi}ni=1)

else
if all of Si are leaves then

MultiTreeBase({Pi}ni=1) (Base case.)
else

Find an internal node Pk to split among {Pi}ni=1.
Propagate bounds of Pk to Pk

L and Pk
R.

MultiTree({P1, · · · ,Pk−1,Pk
L,Pk+1, · · · ,Pn})

MultiTree({P1, · · · ,Pk−1,Pk
R,Pk+1, · · · ,Pn})

Refine summary statistics based on the two recursive calls.

2. k is numerically low-rank given the training set: the kernel matrix K has a

low rank implying the data points lie in a span of a smaller subset in the induced

reproducing kernel Hilbert space.

3. k is (conditionally) positive-definite.

Definition 2.3.1. Positive definite kernel: Let χ be a nonempty set. If k : χ× χ

for all m ∈ N and all x1, · · · ,xm ∈ χ gives rise to a positive definite kernel matrix

K, then k is positive-definite. That is,
∑
i,j

cic̄jKi,j ≥ 0 for all ci ∈ C.

Conditionally positive definite kernel: k is conditionally positive definite if∑
i,j

cic̄jKi,j ≥ 0 for all
m∑
i=1

ci = 0.
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Q ´ R

QL
´ RL QL

´ RR QR
´ RL QR

´ RR

QL,L
´RR QL,R

´RR QR,L
´RR QR,R

´RR

Figure 11: The dual-tree algorithm is given in Algorithm 2.3.1 and is a special case
of Algorithm 2.2.2. An example computation tree for a pairwise N -body problem.
Here we branch simultaneously both of the sets Q and R. Vertical dashed arrows
denote independent computations. Each point in Q is associated with a query result
which must be synchronized under parallelization setting. Horizontal dashed arrows
denote computations that must be performed sequentially due to this reason.

Fast algorithms for evaluating kernel sums can be divided into four types: 1)

hierarchical methods which employ spatial partitioning structures. These methods

achieve efficiency via series expansion or finite-extent nature of the kernel; 2) reduced

set methods from physics/machine learning communities [165]; 3) Monte Carlo-based

methods in the data space; 4) random projection-based methods in the function space.

2.3.1 Hierarchical Methods

Series Expansion-based Methods. Most hierarchical methods using trees utilize

series expansions. The first expansion called the far-field expansion summarizes the

contribution of Rsub for a query q:

Φ(q;Rsub) =
∑

rjn∈Rsub

wjnk(q, rjn) =
∑

rjn∈Rsub

wjn

∞∑
m=1

bmηm(q,Rsub)ψm(rjn ,R
sub)

=

∞∑
m=1

ηm(q,Rsub)

 ∑
rjn∈Rsub

bmwjnψm(rjn ,R
sub)

 =

∞∑
m=1

ηm(q,Rsub)Mm(Rsub)

where ηm’s and ψm’s show dependence on the subset Rsub . The second type called
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Algorithm 2.3.1 DualTree(Qsub ,Rsub): The canonical dual-tree algorithm.

if CanSummarize(Qsub ,Rsub) (Try approximation.) then
Summarize(Qsub ,Rsub)

else
if Qsub is a leaf node then

if Rsub is a leaf node then
DualTreeBase(Qsub ,Rsub) (Base case.)

else
Propagate bounds of Qsub to Qsub,L and Qsub,R.
if Rsub is a leaf node then

DualTree(Qsub,L,Rsub), DualTree(Qsub,R,Rsub)
else

DualTree(Qsub,L,Rsub,L), DualTree(Qsub,R,Rsub,L)
DualTree(Qsub,L,Rsub,R), DualTree(Qsub,R,Rsub,R)

Refine summary statistics based on the recursive calls.

the local expansion for q ∈ Qsub ⊂ Q expresses the contribution of Rsub near q:

Φ(q;Rsub) =
∑

rjn∈Rsub

wjnk(q, rjn) =
∑

rjn∈Rsub

wjn

∞∑
m=1

gmηm(rjn ,Q
sub)ψm(q,Qsub)

=
∞∑
m=1

ψm(q,Qsub)

 ∑
rjn∈Rsub

gmwjnηm(rjn ,Q
sub)

 =
∞∑
m=1

ψm(q,Qsub)Lm(R,Qsub)

Both representation are truncated at a finite number of terms depending on the

level of prescribed accuracy, achieving O(|Q| log |R|) runtime in most cases. To

achieve O(|Q| + |R|) runtime, we require an efficient linear operator that converts

Mm(R) into Lm(R,Q)’s. Depending on the basis representations of η’s and ψ’s, the

far-to-local linear operator is diagonal and the translation is linear in the number of

coefficients. There are many serial algorithms [7, 10, 83, 84, 30, 78, 203] that use

different series expansions forms to bound error deterministically.

Finite-extent Kernels. While most FMM algorithms have focused on approximat-

ing continuous differentiable kernel sums, [78, 80, 82, 77] have generalized to handle

any kernels including the popular Epanechnikov kernel widely used in statistics. A

region of space outside the finite extent from a given query point (or a group of

query points) are pruned using the distance criterion. [156] has also generalized and
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Figure 12: The reference points (the left tree) are hierarchically compressed and
uncompressed when a pair of query (from the right tree)/reference nodes is approxi-
mated within an error tolerance.

developed a series-expansion-like moments for the Epanechnikov kernel.

2.3.2 Reduced Set Expansion-based Methods

Reduced set methods express each data point as a linear combination of points (so

called dictionary points each of which gives rise to the function b : RD × RD → R):

Φ(q; R) ≈ Φ̃(q; Rreduced) =
∑

dk∈RD
ukb(q,dk)

where |Rreduced | � |R| and the resulting kernel sum can be evaluated more quickly.

In the physics community, uniform grid points are chosen and points are projected on

Fourier bases (i.e. b(·, ·) is the Fourier basis). Depending on how the particle-particle

interactions are treated, a FFT-based summation method belongs to the category
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Φ Hxk L

ak ,2 Φ Hx2 L

ak ,1Φ Hx1L

Figure 13: Kernel linear independence criterion for choosing the reduced set expan-
sion. The solid arrow φ(xk) is projected down into a set of components φ(x1) and
φ(x2) with some reconstruction error.

of Particle-Particle-Particle Mesh (P 3M) method or Particle-Mesh (PM) method.

However, these methods do not scale beyond three dimensions due to uniform grids.

Recently, machine learning practitioners have employed a variant of reduced set

method that utilize positive-definiteness (or conditionally positive-definiteness) of the

kernel function and successfully scaled many kernel methods such as SVM and GPR.

[66] uses the incomplete Cholesky factorization to compute a sparse low rank approxi-

mation K̃ = GGT ' K. However, this requires storing K in memory. Another simple

algorithm is the Nystrom method [195] which reduces the O(N3) computational cost

by carrying out an eigendecompoisition on a smaller set of randomly chosen train-

ing points. Recued set methods generally require optimizing the basis points given

a pre-selected error criterion (i.e. on reconstruction error in the reproducing kernel

Hilbert space or generalization error with/without regularization) and the resulting

dictionary Rreduced can be quite large in some cases [176, 175, 141, 167].

2.3.3 Monte Carlo-based Methods

[95] proposes a probabilistic approximation scheme based on the central limit theo-

rem, and [113] used both deterministic and probabilistic approximations. Especially,
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probabilistic approximations can help overcome the curse of dimensionality at the

expense of indeterminism in approximated kernel sums. The error bounds provided

by the deterministic expansions are generally pessimistic and loose. We have an addi-

tional parameter α that controls the probability level at which the deviation between

each approximation and its corresponding exact values holds.

Theorem 2.3.2. Central limit theorem: Let f1, f2, · · · , fm be independent,

identically distributed samples from the probability distribution F with variance σ2,

and µ̃ = 1
m

m∑
s=1

fs be the sample mean of the samples. As m→∞, µ̃ ; N(µ, σ2/m).

A widely accepted statistical rule of thumb asserts that 30 or more samples are

usually enough to put a sample mean into the asymptotic regime. Berry-Esseen

theorem characterizes the rate at which this convergence to normality takes place

more precisely:

Theorem 2.3.3. Berry-Esseen theorem: Let µ̃ be the sample mean of m samples

drawn from the distribution F , and let µ, σ2, and ρ be the mean, variance, and third

central moment of F . Let Fm(x) be the cumulative distribution function of µ̃, and

Ψ(x;µ, σ2) be the cumulative distribution function of the Gaussian with mean µ and

variance σ2. Then there exists a constant C > 0 such that for all values of µ̃ and m:

∣∣Fm(µ̃)−Ψ(µ̃;µ, σ2)
∣∣ ≤ Cρ

σ3
√
m

which roughly says that the discrepancy between the normal distribution and the

sample mean distribution goes down as 1√
m

. For each q ∈ Q, we get the empirical

distribution F q
m using m samples. We can then form an approximate Φ̃(q; Rsub):

Φ̃(q; Rsub ;F q
m) = |Rsub|µ̃Fq

m
=
|Rsub|
m

m∑
s=1

k(q, rs) (2.3.1)
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⇒

Figure 14: Random feature extraction method by [150].

2.3.4 Random Projection-based Methods

[2] proposes to replace the kernel matrix K with its randomized variant using ran-

dom projections and randomized rounding. Randomized rounding sparsifies K, which

helps in accelerating the matrix-matrix product inside orthogonal/Lanczos iteration,

while the random projection reduces the dimensionality of each point which enables

faster computaton of pairwise distances. However, the authors focused only on theo-

retical analysis without providing concrete experimental results.

[150] proposes explicitly mapping the data to a low-dimensional Euclidean inner

product space using a randomized feature map. The inner product in the new low-

dimensional space equals the kernel value in expectation. For positive-definite kernels,

this techniques relies on the classical theorem by Bochner [158] stated here:

Theorem 2.3.4. A continuous kernel k(q, r) = k(q − r) on RD is positive definite

if and only if k(δ) is the Fourier transform of a non-negative measure.

A positive continuous real-valued kernel k(q, r) can now be written as4:

k(q, r) =

∫
RD

p(ω)eı·ω
T (q−r)dω =

∫
RD

p(ω) cos
(
ωT (q− r)

)
dω = Eω∼p(ω)

[
ξω(q)Tξω(r)

]
(2.3.2)

4Although [85] uses the same Fourier integral representation of k, the authors truncate the Fourier
integral and apply a quadrature rule for approximation.
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where ξω(x) =
[
cos(ωTx), sin(ωTx)

]T
. For the Gaussian kernel, p(ω) = e−||ω||

2/(2/h)2 ,

the D-dimensional Gaussian function with the bandwidth of 1
h
. We can now express

Equation (2.0.5) as:

Φ(q; R) =
∑
rj∈R

wjEω∼p(ω)

[
ξω(q)Tξω(rj)

]
(2.3.3)

This approach has been recently extended to utilize for positive definite dot product

kernels of the form k(x,y) = f(< x,y >) for some real; valued function f : R → R

and compositional kernels of the form kco(x,y) = kdp(k(x,y)) where kdp is some dot

product kernel and k is an arbitrary positive definite kernel.

For general kernels, [150] proposes the usage of random binning which is reminis-

cent of the locality sensitive hashing approach [74]. [169] generalizes [150] by providing

randomization techniques for structured data including strings and graphs.

2.4 Error Bounds

Many kernel summation algorithms trade precision over speed. The following error

bounding criteria on Equation (2.0.3) are used in the literature:

Definition 2.4.1. τ absolute error bound: For xi1 ∈ X1, compute Φ̃(xi1 ; X2 ×

· · · ×Xn) such that
∣∣∣Φ̃(xi1 ; X2 × · · · ×Xn)− Φ(x; X2 × · · · ×Xn)

∣∣∣ ≤ τ .

Definition 2.4.2. ε relative error bound: For xi1 ∈ X1, compute Φ̃(xi1 ; X2 ×

· · · ×Xn) such that
∣∣∣Φ̃(xi1 ; X2 × · · · ×Xn)− Φ(xi1 ; X2 × · · · ×Xn)

∣∣∣ ≤
ε |Φ(xi1 ; X2 × · · · ×Xn)|.

Bounding the relative error is much harder because the error bound criterion

is in terms of the initially unknown exact quantity. As a result, many previous

methods [84, 201] have focused on bounding the absolute error. The relative error

bound criterion is preferred to the absolute error bound criterion if the amount of error

incurred must be controlled with respect to the relative magnitude of the computed
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Figure 15: The colored nodes form a frontier of nodes used to approximate Φ(q; R) =∑
Rsub

Φ(q; Rsub) with Φ̃(q; R) =
∑

Rsub

Φ̃(q; Rsub).

quantities. The following error bound criterion is a hybrid form that enforces both

relative and absolute errors.

Definition 2.4.3. (1 − α) probabilistic ε relative/τ absolute error: For xi1 ∈

X1, compute Φ̃(xi1 ; X2× · · · ×Xn), such that with at least probability 0 < 1−α ≤ 1,∣∣∣Φ̃(xi1 ; X2 × · · · ×Xn)− Φ(xi1 ; X2 × · · · ×Xn)
∣∣∣ ≤ ε |Φ(xi1 ; X2 × · · · ×Xn)|+ τ .

Using Trees for Allocating Errors. Suppose we are approximating Equa-

tion (2.0.5) and given a tree over the reference set R (see Figure 15). We can use a

frontier of nodes in this tree to form a partition of the entire reference set R such that

R =
⋃

Rsub . Given that the exact quantity for a given query q is given by the sum of

the exact quantities contributed by the partition: Φ(q; R) =
∑

Rsub

Φ(q; Rsub), we can

approximate the contribution of each part and aggregate them to form the overall

approximation: Φ̃(q; R) =
∑

Rsub

Φ̃(q; Rsub). The maximum error is then by bounded

by the application of triangle inequality:∣∣∣Φ̃(q; R)− Φ(q; R)
∣∣∣ =

∣∣∣∣∣∑
Rsub

Φ̃(q; Rsub)− Φ(q; Rsub)

∣∣∣∣∣ ≤∑
Rsub

∣∣∣Φ̃(q; Rsub)− Φ(q; Rsub)
∣∣∣

(2.4.1)
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Each part
∣∣∣Φ̃(q; Rsub)− Φ(q; Rsub)

∣∣∣ can be bounded using any of the approxima-

tion methods in Section 2.3 given the selected overall error bound criterion (see Sec-

tion 2.4). The usual strategy is to allocate errors in proportion to 1) the number

of points in the given frontier node; 2) the amount of data variance in the given

frontier node [95]. The error allocation can be dynamically re-adjusted during the

computation [112].
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⇓

Figure 16: Bound propagation example. An internal node pushes quantities to its
immediate child nodes. These child nodes in turn incorporate the received quantities
inside their appropriate slots.

29



⇓

Figure 17: Bound refinement example. An internal node refines its lower and upper
bounds based on the bounds held by its child nodes.
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CHAPTER III

SERIES EXPANSION-BASED METHOD I

This chapter introduces the series expansion-based method for scaling pairwise kernel

summations (Equation (2.0.5)). We focus on a specific instance of Equation (2.0.5)

where the kernel is the Gaussian kernel k(q, r) = exp
(
−||q−r||2

2h2

)
:

Φ (Q×R) = map
qi∈Q

∑
rj∈R

wj exp

(
−||qi − rj||2

2h2

) (3.0.2)

where we put a uniform weight over each reference point (i.e. wj = 1)1. Intuitively,

selecting the Gaussian kernel already puts some structures to the problem. The

Gaussian kernel is 1) continuously differentiable with respect to its arguments; 2)

positive-definite and has a well-defined Fourier transform. Fast multipole methods

discussed in this chapter take advantage of the first property. Here we define the

computational task tackled in this chapter.

Problem: Suppose we are given the set of query points Q and the set of reference

points R. Given a pairwise Gaussian kernel function k(x,y) = exp
(
−||x−y||2

2h2

)
, the

relative error level ε > 0, and the desired kernel sum Φ(q; R) =
∑

rj∈R

k(q, rj) for each

q ∈ Q,

Task: Compute an approximation Φ̃(q; R) for each q ∈ Q such that∣∣∣Φ̃(q; R)− Φ(q; R)
∣∣∣ ≤ εΦ(q; R) as fast as possible.

1The extension to non-uniform weights is trivial.
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This chapter builds on [114] where the Dual-Tree Fast Gauss Transform was pre-

sented briefly. The Dual-tree Fast Gauss Transform was the first serious effort in com-

bining the best tools from discrete algorithms and continuous approximation theory.

This chapter adds details on the approximation mechanisms used in the algorithm

and provides a more thorough comparison with the other algorithms. Section 3.1

describes the extensions to the dual-tree algorithm to handle higher-order series ex-

pansion approximations. This expansion uses the O(pD) expansion proposed in [84]

and results from taking dimension-wise products of truncated Taylor expansions. In

Section 3.2, we provide performance comparison with some of the existing methods

for evaluating the Gaussian kernel sums in a serial setting.

3.1 Dual-Tree Fast Gauss Transform

3.1.1 Mathematical Preliminaries

Univariate Taylor’s Theorem. The univariate Taylor’s theorem is crucial for the

approximation mechanism in Fast Gauss transform and the new algorithm:

Theorem 3.1.1. If n ≥ 0 is an integer and f is a function which is n times con-

tinuously differentiable on the closed interval [c, x] and n + 1 times differentiable on

(c, x) then

f(x) =
n∑
i=0

f (i)(c)
(x− c)i

i!
+Rn (3.1.1)

where the Lagrange form of the remainder term is given by

Rn = f (n+1)(ξ) (x−c)n+1

(n+1)!
for some ξ ∈ (c, x).

Properties of the Gaussian Kernel. Based on the univariate Taylor’s Theorem

stated above, [84] develops the series expansion mechanism for the Gaussian kernel

sum. Our development begins with one-dimensional setting and generalizes to multi-

dimensional setting. The Rodrigues’ formula defines the Hermite polynomials:

Hn(t) = (−1)n exp(t2)Dn exp(−t2), t ∈ R1 (3.1.2)
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The first few polynomials include: H0(t) = 1, H1(t) = 2t, H2(t) = 4t2 − 2. The

generating function for Hermite polynomials is defined by:

exp(2ts− s2) =
∞∑
n=0

sn

n!
Hn(t) (3.1.3)

Let us define the Hermite functions hn(t) = exp(−t2)Hn(t). Multiplying both sides

of Equation (3.1.3) by exp(−t2) yields:

exp(−(t− s)2) =
∞∑
n=0

sn

n!
hn(t) (3.1.4)

We would like to use a “scaled and shifted” version of this derivation for taking the

bandwidth h into account.

exp

(
−(t− s)2

2h2

)
= exp

(
−((t− s0)− (s− s0))2

2h2

)
=
∞∑
n=0

1

n!

(
s− s0√

2h2

)n
hn

(
t− s0√

2h2

)
Note that our D-dimensional multivariate Gaussian kernel can be expressed as a prod-

uct of D one-dimensional Gaussian kernel. Similarly, the multidimensional Hermite

functions can be written as a product of one-dimensional Hermite functions using the

following identity for any t ∈ RD.

Hα(t) = Hα[1](t[1]) · · ·Hα[D](t[D])

hα(t) = exp(−||t||2)Hα(t) = hα[1](t[1]) · · ·hα[D](t[D])

(3.1.5)

exp

(
−||t− s||2

2h2

)
=

D∏
d=1

exp

(
−(t[d]− s[d])2

2h2

)
(3.1.6)

We can also express the multivariate Gaussian about another point s0 ∈ RD as:

exp

(
−||t− s||2

2h2

)
=

D∏
d=1

(
∞∑

nd=0

1

nd!

(
s[d]− s0[d]√

2h2

)nd
hnd

(
t[d]− s0[d]√

2h2

))

=
∑
α≥0

1

α!

(
s− s0√

2h2

)α
hα

(
t− s0√

2h2

) (3.1.7)

The representation which is dual to Equation (3.1.7) is given by:

exp(
−||t− s||2

2h2
) =

D∏
d=1

(
∞∑

nd=0

(−1)nd

nd!
hnd

(
t0[d]− s[d]√

2h2

)(
t[d]− t0√

2h2

)β)

=
∑
β≥0

(−1)β

β!
hβ

(
t0 − s√

2h2

)(
t− t0√

2h2

)β (3.1.8)

33



The final property is the recurrence relation of the one-dimensional Hermite function:

hn+1(t) = 2t · hn(t)− 2n · hn−1(t), t ∈ R1 (3.1.9)

and the Taylor expansion of the Hermite function hα(t) about t0 ∈ RD.

hα(t) =
∑
β≥0

(t− t0)β

β!
(−1)|β|hα+β(t0) (3.1.10)

3.1.2 Notations in Algorithm Descriptions

Here we summarize notations used throughout the descriptions and the pseudocodes

for our algorithms. The followings are notations that are relevant to a query point

qi ∈ Q or a query node Qsub in the query tree.

• RE(·): The set of reference points rjn ∈ R whose pairwise interaction is com-

puted exhaustively for a query point qi ∈ Q or a query node Qsub .

• RF2L(·): The set of reference points rjn ∈ R whose contribution is via far-to-

local approximation for a given query point qi ∈ Qsub or a query node Qsub .

• RDL(·): The set of reference points rjn ∈ R whose contribution is from a local

expansion for a given query point qi ∈ Qsub or a query node Qsub .

• RDF(·): The set of reference points rjn ∈ R whose contribution is from a far-field

expansion for a given query point qi ∈ Qsub or a query node Qsub .

The followings are notations relevant to a query point qi ∈ Q.

• Φ(qi; R
sub): The true initially unknown kernel sum for a query point qi con-

tributed by the reference set Rsub ⊆ R, i.e.
∑

rjn∈Rsub

k(||qi − rjn||).

• Φl(qi; R): A lower bound on Φ(qi; R).

• Φl(Qsub ×R): A lower bound on Φ(qi; R) for qi ∈ Qsub .

34



• Φu(qi; R): An upper bound on Φ(qi; R).

• Φu(Qsub ×R): An upper bound on Φ(qi; R) for qi ∈ Qsub .

• Φ̃(qi; R
sub): An approximation to Φ(qi; R

sub) for Rsub ⊆ R. The additive prop-

erty for a family of pairwise disjoint sets {Ri}mi=1: Φ̃

(
qi;

m⋃
i=1

Ri

)
=

m∑
i=1

Φ̃(qi; Ri).

• Φ̃
(
qi; {(Rj,Aj)}mj=1

)
: A refined notation of Φ̃

(
qi;

m⋃
j=1

Rj

)
to specify the type

of approximation Aj used for each reference node Rj.

Here we define some notations for representing postponed bound changes to Φl(qim ; R)

and Φu(qim ; R) for all qim ∈ Qsub ⊆ Q.

• ∆l(Qsub): Postponed lower bound changes on Φl(Qsub × R) for a query node

Qsub in the query tree and Φl(qim ; R) for qim ∈ Qsub .

• ∆u(Qsub): Postponed upper bound changes on Φu(Qsub ×R) for a query node

Qsub in the query tree and Φu(qim ; R) for qim ∈ Qsub .

These postponed changes to the upper and lower bounds must be incorporated into

each individual query qim belonging to the sub-tree under Qsub .

Our series-expansion based algorithm uses four different approximation methods,

i.e. A ∈ {D, Ñ(c, p),F(c, p),N(c, p)}. For each Rsub , an approximation method is

chosen. D denotes the exhaustive computation of
∑

rjn∈R

k(||qi− rjn||). Ñ(c, p) denotes

the translation of the order p far-field moments of Rsub to the local moments in the

query node Qsub that owns qi about a representative centroid c inside Qsub . F(c, p)

denotes the evaluation up to the p-th order far-field expansion formed by the moments

of Rsub expanded about a representative point c inside Rsub . N(c, p) denotes the p-th

order direct accumulation of the local moments due to Rsub about a representative

centroid c inside Qsub that owns qi. We discuss these methods in Section 3.1.3.
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3.1.3 Series Expansion for the Gaussian Kernel Sums

We would like to point out to our readers that we present the series expansion in a

way that sheds light to a working implementation. [84] chose a theorem-proof format

for explaining the essential operations. We present the series expansion methods

from the more informed computer science perspective of divide-and-conquer and data

structures, where the discrete aspects of the methods are concerned.

One can derive the series expansion for the Gaussian kernel sums (defined in

Equation (3.0.2)) using Equation (3.1.7) and Equation (3.1.8). The basic idea is to

express the kernel sum contribution of a reference node as a Taylor series of infinite

terms and truncate it after some number of terms, given that the truncation error

meets the desired absolute error tolerance.

The followings are two main types of Taylor series representations for an infinitely

differentiable kernel k (·). The key difference between two representations is the loca-

tion of the expansion center which is either in a reference region or a query region. The

expansion center for both expansion types is conveniently chosen to be the geometric

center of the region. These representations were briefly introduced in Section 2.3.1.

Far-field Expansion. This is derived from Equation (3.1.7) and expresses the kernel

sum contribution from the reference points in Rsub for an arbitrary query point. It

is expanded about cR, a representative point of Rsub . Equation (3.1.7) is an infinite

series, and thus we impose a truncation order p along each dimension. Substituting
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qi for t, rj for s and cR for s0 into Equation (3.1.7) yields:

Φ(qi; R
sub) =

∑
rjn∈Rsub

exp

(
−||qi − rjn||2

2h2

)

=
∑

rjn∈Rsub

D∏
d=1

 ∞∑
α[d]=0

1

α[d]!

(
rjn [d]− cRsub [d]√

2h2

)α[d]

hα[d]

(
qi[d]− cRsub [d]√

2h2

)
=

∑
rjn∈Rsub

D∏
d=1

( ∑
α[d]<p

1

α[d]!

(
rjn [d]− cRsub [d]√

2h2

)α[d]

hα[d]

(
qi[d]− cRsub [d)]√

2h2

)
+

∑
α[d]≥p

1

α[d]!

(
rjn [d]− cRsub [d]√

2h2

)α[d]

hα[d]

(
qi[d]− cRsub [d]√

2h2

))

Truncating after p terms along each dimension yields:

Φ(qi; R
sub) ≈ Φ̃(qi, {(Rsub ,F(cRsub , p))})

=
∑

rjn∈Rsub

D∏
d=1

 ∑
α[d]≤p

1

α[d]!

(
rjn [d]− cRsub [d]√

2h2

)α[d]

hα[d]

(
qi[d]− cRsub [d]√

2h2

)
=

∑
rjn∈Rsub

∑
α≤p

1

α!

(
rjn − cRsub√

2h2

)α
hα

(
qi − cRsub√

2h2

)

=
∑
α≤p

 ∑
rjn∈Rsub

1

α!

(
rjn − cRsub√

2h2

)αhα(qi − cRsub√
2h2

)

=
∑
α≤p

Mα(Rsub , cRsub)hα

(
qi − cRsub√

2h2

)
where we denote

Mα(Rsub , c) =
∑

rjn∈R

1

α!

(
rjn − c√

2h2

)α
(3.1.11)

which is a function of a reference node Rsub and an expansion center c. We denote

Φ̃(qi; {Rsub ,F(c, p)}) as the far-field expansion of order p for the kernel sum

contribution of Rsub expanded about c. Ideally, we would like to choose the

smallest p such that the truncation after the chosen order p incurs tolerable error; this

will be discussed in Section 3.1.5. Note that the far-field expansion for the Gaussian

kernel separates the interaction between a reference point and a query point (namely
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Figure 18: Given the query node Qsub containing the query points {qim}
|Qsub |
m=1 and

the reference node Rsub containing the reference points {rjn}
|Rsub |
n=1 , evaluating the

far-field expansion generated by the reference points at the given query point qim

up to four terms in each dimension, Φ(qim ; Rsub) ≈ Φ̃(qim ; {(Rsub ,F(cRsub , 3))}) =∑
α≤3

[ ∑
rjn∈Rsub

1
α!

(
rjn−c

Rsub√
2h2

)α]
hα

(
qim−c

Rsub√
2h2

)
, involves computing the sum of the

element-wise product between the two-dimensional array of far-field coefficients with
the query-dependent two-dimensional array.
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Figure 19: The Gaussian kernel sum series expansion represented by the far-field

coefficients in Rsub ,
∑
α≤p

Mα(Rsub , cRsub)hα

(
rjn−c

Rsub√
2h2

)
, is valid regardless of the lo-

cation of the given query point, given the size constraint on the reference node (see
Section 3.1.5). Each query point location will incur different amount of error.

exp (−||qi − rjn||2/(2h2))) into a summation of two product terms. For each multi-

index α, Mα(Rsub , cRsub), which depends only on the intrinsic information for the

reference node (the reference points rjn ∈ Rsub and the reference centroid cRsub which

is constant with respect to Rsub), is called the far-field moments/coefficients of the

reference region Rsub . Because Mα(Rsub , cRsub) part of the far-field expansion of the

Gaussian kernel sums is the same regardless of the query point qi used for evaluation,

they can be computed only once and stored within Rsub for efficiently approximating

the contribution of Rsub for different query points (see Figure 18). Precomputing

the far-field moments for a reference node Rsub up to O(pD) terms (i.e. computing∑
rjn∈Rsub

1
α!

(
rjn−c

Rsub√
2h2

)α
for each α ≤ p) requires O(|Rsub|pD) operations.

The far-field expansion of order p for the Gaussian kernel sums is valid for any

query locations qi given that the reference node meets the certain size constraint (see

Section 3.1.5). However, for a fixed order p, evaluating on query points that are far

away from the reference centroid in general incur smaller amount of error.
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Local Expansion. : A local expansion (derived from Equation (3.1.8)) is a Taylor

expansion of the kernel sums about a representative point cQsub in a query region Q.

After substituting qi for t, cQsub for t0 and rjn for s, the kernel sum contribution of

Rsub to a query point qi ∈ Qsub is given by:

Φ(qi; R
sub) =

∑
rjn∈Rsub

exp

(
−||qi − rjn||2

2h2

)

=
∑

rjn∈Rsub

D∏
d=1

(
∞∑

nd=0

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]√

2h2

)(
qi[d]− cQsub [d]√

2h2

)β)

=
∑

rjn∈Rsub

D∏
d=1

(∑
nd≤p

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]√

2h2

)(
qi[d]− cQsub [d]√

2h2

)β
+

∑
nd>p

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]√

2h2

)(
qi[d]− cQsub [d]√

2h2

)β)

Again, truncating after p terms along each dimension yields:

Φ̃(qi; {(Rsub ,N(cQsub , p))})

=
∑

rjn∈Rsub

D∏
d=1

(∑
nd≤p

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]√

2h2

)(
qi[d]− cQsub [d]√

2h2

)β)

=
∑

rjn∈Rsub

∑
β≤p

(−1)β

β!
hβ

(
cQsub − rjn√

2h2

)(
qi − cQsub√

2h2

)β

=
∑
β≤p

 ∑
rjn∈Rsub

(−1)β

β!
hβ

(
cQsub − rjn√

2h2

)(qi − cQsub√
2h2

)β

=
∑
β<p

Nβ({(Rsub , (cQsub , p))})
(

qi − cQsub√
2h2

)β
where we denote:

Nβ({(Rsub , (cQsub , p))}) =


∑

rjn∈Rsub

(−1)β

β!
hβ

(
c−rjn√

2h2

)
,β ≤ p

0 , otherwise

(3.1.12)

{Nβ({(Rsub , (cQsub , p))})}β are the direct local moments of Rsub accumulated at cQsub
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up to order p. The error bound criterion will be discussed in Section 3.1.5. Note that:

Φ̃

(
qi;
⋃
a

{
(Ra,N(cQsub , pa))

})
=
∑
a

Φ̃(qi, {(Ra,N(cQsub , pa))})

=
∑
a

∑
β≤pa

 ∑
rjn∈Ra

(−1)β

β!
hβ

(
cQsub − rjn√

2h2

)(qi − cQsub√
2h2

)β

=
∑

β≤max
a

pa

[∑
a

Nβ({(Ra, (cQsub , pa))})

](
qi − cQsub√

2h2

)β

=
∑

β≤max
a

pa

Nβ

(⋃
a

{(Ra, (cQsub , pa))}

)(
qi − cQsub√

2h2

)β

In other words, the local moments for a fixed query node Qsub are additive (see

Figure 21) across a set of disjoint portions of the reference dataset R since its basis

functions

{(
qi−c

Qsub√
2h2

)β}
β

remain the same for all reference points regardless of their

locations. For a given reference node Rsub , accumulating the local moments of Rsub

up to pD terms (that is, evaluating for each β ≤ p) requires O(|Rsub|pD) operations.

These local coefficients are accumulated and stored within the given query node. The

induced local expansion is valid for all query points within the query node under

certain constraints.

3.1.4 Gaussian Sum Approximation Using Series Expansion

Now again assume we are given a query node Qsub and a reference node Rsub . Here

we describe three main methods that use the two expansion types for approximating

Gaussian summation, Φ̃(q; Rsub), for each q ∈ Qsub .

Evaluating a far-field expansion of Rsub: Given the pre-computed far-field mo-

ments Mα(Rsub , cRsub) up to O(pD) terms, one could evaluate the far-field expansion

for a given query point q (that is, approximate Φ̃(q,Rsub)) by forming a dot-product

between the query-dependent vector and the far-field moments, as shown in Figure 18

and Figure 19. Approximating Φ̃(q; Rsub) for all q ∈ Qsub requires O(|Qsub|pD) op-

erations.
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Figure 20: Given the query node Qsub containing the query points {qim}
|Qsub |
m=1 and

the reference node Rsub containing the reference points {rjn}
|Rsub |
n=1 , evaluating the

local expansion generated by the reference points at the given query point qim up
to third terms in each dimension, Φ(qim ; Rsub) ≈ Φ̃(qim ; {(Rsub ,N(cQsub , 2))}) =∑
β≤2

[ ∑
rjn∈Rsub

(−1)β

β!
hβ

(
c
Qsub−rjn√

2h2

)] (
qim−c

Qsub√
2h2

)β
, involves taking the dot-product be-

tween the two-dimensional array of local coefficients with the query-dependent two-
dimensional array.
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Figure 21: Accumulating direct local moments from three reference nodes
R1, R2, and R3 contributing nine terms, four terms, and one term re-
spectively to form the local moments containing the contribution from R1,
R2, and R3: N({(R1, (cQsub , 2)), (R2, (cQsub , 1)), (R3, (cQsub , 0))}). Zeros de-
note the positions that are not explicitly computed using Equation (3.1.12).
N({(R1, (cQsub , 2)), (R2, (cQsub , 1)), (R3, (cQsub , 0))}) = N({(R1, (cQsub , 2))}) +
N({(R2, (cQsub , 1))}) +N({(R3, (cQsub , 0))}) is added to the local moments for Qsub .

Computing and evaluating a local expansion inside Qsub due to the contri-

bution of Rsub: one could iterate over each reference point rjn ∈ Rsub and compute

the local moments Nβ({(Rsub , (cQsub , p))}) due to Rsub up to O(pD) terms (see Fig-

ure 20 and Figure 21). The local accumulation of the contribution of the reference

node R requires O(|Rsub|pD) operations, and evaluating the local expansion for each

qim ∈ Qsub requires a total of O(|Qsub|pD) operations.

Converting far-field moments of Rsub to a local expansion of Qsub: Suppose

Rsub has pre-computed far-field moments up to pD terms. From the far-field moments,

we can approximate the local moments of R but with some amount of error. This

can be seen as a generalization of centroid-based approximation. [84] describes this

method as one of the translation operators, called far-field to local translation operator:
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Figure 22: Two-dimensional far-field coefficients truncated after the first two terms in
each dimension can be converted into a set of local moments using Equation (3.1.13).

Computing Ñβ({(M(Rsub , cRsub), (cQsub , 1))}) involves summing up the element-wise
product between the matrix (or tensor in higher dimensions) consisting of the far-
field moments and the two-by-two window over the Hermite functions whose upper
left multi-index is β. This figure shows how to compute Ñ(1,1)({(M(Rsub , cRsub),
(cQsub , 1))}).

Lemma 3.1.2. Far-field to local (F2L) translation operator for Gaussian

kernel (Lemma 2.2 in [84]): Given a reference node Rsub, a query node Qsub, and

the truncated far-field expansion centered at cRsub of Rsub up to O(pD) terms:

Φ̃(qim ; {(Rsub ,F(cRsub , p))}) =
∑
α≤p

Mα(Rsub , cRsub)hα

(
qim−c

Rsub√
2h2

)
,

the Taylor expansion of the far-field expansion at cQsub in Q is given by:

Φ̃(qim ; {(Rsub ,F(cRsub , p))}) =
∑
β≥0

Ñβ({(M(Rsub , cRsub), (cQsub , p))})
(

qim−c
Qsub√

2h2

)β
where

for qim ∈ Qsub,

Ñβ({(M(Rsub , cRsub ), (cQsub , p))}) =
(−1)|β|

β!

∑
α≤p

Mα(Rsub , cRsub )hα+β

(
cQsub − cRsub

√
2h2

)
(3.1.13)
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Proof. Replacing the Hermite function portion of the expansion with its Taylor series:

Φ̃(qim ; {(Rsub ,F(cRsub , p))}) =
∑
α≤p

Mα(Rsub , cRsub )hα

(
qim − cRsub√

2h2

)

=
∑
α≤p

Mα(Rsub , cRsub )
∑
β≥0

(−1)|β|

β!
hα+β

(
cQsub − cRsub

√
2h2

)(
qim − cQsub

√
2h2

)β

=
∑
β≥0

(−1)|β|

β!

∑
α≤p

Mα(Rsub , cRsub )hα+β

(
cQsub − cRsub

√
2h2

)(qim − cQsub

√
2h2

)β

However, note Φ̃(qim ; {(Rsub ,F(cRsub , p))}) has an infinite number of terms, and

must be truncated after O(pD) terms. In other words, the local moments accumulated

for Qsub are the coefficients for Φ̃(qim ; {(Rsub ,N(cQsub , p))}) =∑
β≤p

Ñβ({(M(Rsub , cRsub), (cQsub , p))})
(

qim−c
Qsub√

2h2

)β
(see Figure 22). Computing

{Ñβ({(M(Rsub , cRsub), (cQsub , p))})}β≤p requires iterating over all of O(pD) far-field

moments {Mα(R, cRsub)}α≤p for each Lβ({(R, T (cQsub , p))}). This operation isO(Dp2D).

These approximations are generally valid under certain conditions which depend

on how the error bounds associated with these approximation methods are derived.

Moreover, we have not discussed how to choose the method of approximation given

a query and reference node pair and the order of approximation, i.e. the number of

terms required to achieve a given level of error. We discuss the details in Section 3.1.5.

3.1.5 Truncation Error Bounds

Because the far-field and the local expansions are truncated after taking O(pD) terms,

we incur an error in approximation. The original error bounds for the Gaussian kernel

in [84] were wrong and corrections were shown in [11]. Here we present the error

bounds for 1) evaluating a truncated far-field expansion of a reference node for any

query point q ∈ RD; 2) evaluating a truncated local expansion of Qsub due to the

contribution of a reference node Rsub for any query point qim ∈ Qsub ; 3) evaluating a

truncated local expansion formed from converting a truncated far-field expansion of
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a reference node Rsub for any query point qim ∈ Qsub . Note that these error bounds

place restrictions on the size of the nodes in consideration: reference node, query

node, or both. First we start with the truncation error bound for evaluating the

far-field expansion formed for a given reference node.

Lemma 3.1.3. Error bound for evaluating a truncated far-field expan-

sion [11]: Suppose we are given a far-field expansion of Rsub about its centroid cRsub :

Φ̃(q; {(Rsub ,F(cRsub , p))}) =
∑
α≤p

Mα(Rsub , cRsub)hα

(
q−c

Rsub√
2h2

)
where

Mα(Rsub , cRsub) =
∑

rjn∈Rsub

1
α!

(
rjn−c

Rsub√
2h2

)α
. If ∀rjn ∈ Rsub satisfies ||rjn − cRsub ||∞ <

rh for r < 1, then for any q ∈ RD,

∣∣∣Φ̃(q; {(Rsub ,F(cRsub , p))})− Φ(q;Rsub)
∣∣∣ ≤ |Rsub |

(1− r)D
D−1∑
k=0

(
D

k

)
(1−rp+1)k

(
rp+1√
(p+ 1)!

)D−k
(3.1.14)

Proof. We expand the far-field expansion as a product of one-dimensional Hermite

functions and utilize a bound on one-dimensional Hermite functions due to [184]:

1
n!
|hn(x)| ≤ 2

n
2√
n!

exp
(
−x2

2

)
, n ≥ 0, x ∈ R1.

upd(q[d], rjn [d], cRsub [d]) =

p∑
ni=0

1

ni!

(
rjn [d]− cRsub [d]√

2h2

)ni
hni

(
q[d]− cRsub [d]√

2h2

)

vpd(q[d], rjn [d], cRsub [d]) =
∞∑

ni=p+1

1

ni!

(
rjn [d]− cRsub [d]√

2h2

)ni
hni

(
q[d]− cRsub [d]√

2h2

)

exp

(
−||q− rjn ||2

2h2

)
=

D∏
d=1

(upd(q[d], rjn [d], cRsub [d]) + vpd(q[d], rjn [d], cRsub [d]))
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We obtain for 1 ≤ d ≤ D:

upd(q[d], rjn [d], cRsub [d]) ≤
p∑

ni=0

1

ni!

∣∣∣∣rjn [d]− cRsub [d]√
2h2

∣∣∣∣ni ∣∣∣∣hni (q[d]− cRsub [d]√
2h2

)∣∣∣∣
≤

p∑
ni=0

∣∣∣∣ rh√
2h2

∣∣∣∣ni 2
ni
2

√
ni!

exp

(
−(q[d]− cRsub [d])2

4h2

)
≤

p∑
ni=0

rni ≤ 1− rp+1

1− r

vpd(q[d], rjn [d], cRsub [d]) ≤
∞∑

ni=p+1

1

ni!

∣∣∣∣rjn [d]− cRsub [d]√
2h2

∣∣∣∣ni ∣∣∣∣hni (q[d]− cRsub [d]√
2h2

)∣∣∣∣
≤

∞∑
ni=p+1

∣∣∣∣ rh√
2h2

∣∣∣∣ni 2
ni
2

√
ni!

exp

(
−(q[d]− cRsub [d])2

4h2

)
≤ 1√

(p+ 1)!

∞∑
ni=p+1

rni ≤ 1√
(p+ 1)!

rp+1

1− r

Therefore, ∣∣∣∣∣
D∏
d=1

upd(q[d], rjn [d], cRsub [d])− exp

(
−||q− rjn ||2

2h2

)∣∣∣∣∣
≤(1− r)−D

D−1∑
k=0

(
D

k

)
(1− rp+1)k

(
rp+1√
(p+ 1)!

)D−k
∣∣∣∣∣∣
∑
α≤p

Mα(Rsub , cRsub )hα

(
q− cRsub√

2h2

)
−
∑
rjn∈R

exp

(
−||q− rjn ||2

2h2

)∣∣∣∣∣∣
≤ |R

sub |
(1− r)D

D−1∑
k=0

(
D

k

)
(1− rp+1)k

(
rp+1√
(p+ 1)!

)D−k

Intuitively, this theorem implies that evaluating a truncated far-field expansion

for a query point (regardless of its location) requires that the reference points used to

form the expansion are within the bandwidth h in each dimension from the centroid

cRsub (i.e. the reference node has a maximum side length of 2h).

The following gives the truncation bound for the local expansion formed inside a

query node whose bound is within a hypercube of some side length.

Lemma 3.1.4. Error bound for evaluating a truncated local expansion:

Suppose we are given the local expansion about cQsub of the given query node Qsub

accounting for the kernel sum contribution of Rsub: Φ̃(qim ; {(Rsub ,N(cQsub , p))}) =
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∑
β≤p

Nβ({(Rsub , (cQsub , p))})
(

qim−c
Qsub√

2h2

)β
where qim ∈ Qsub and Nβ({(Rsub , (cQsub , p))}) =∑

rjn∈Rsub

(−1)|β|

β!
hβ

(
c
Qsub−rjn√

2h2

)
If ∀qim ∈ Qsub satisfies ||qim − cQsub ||∞ < rh for r < 1, then for any qim ∈ Qsub:

∣∣∣Φ̃(qim ; {(Rsub ,N(cQsub , p))})− Φ(qim ;Rsub)
∣∣∣ ≤ |Rsub |

(1− r)D
D−1∑
k=0

(
D

k

)
(1− rp)k

(
rp√
p!

)D−k
(3.1.15)

Proof. Taylor expansion of the Hermite function yields:

exp

(
−||qim − rjn ||2

2h2

)
=
∑
β≥0

(−1)|β|

β!

∑
α≥0

1

α!

(
rjn − cRsub√

2h2

)α
hα+β

(
cQsub − cRsub

√
2h2

)(
qim − cQsub

√
2h2

)β
=
∑
β≥0

(−1)|β|

β!

∑
α≥0

1

α!

(
cRsub − rjn√

2h2

)α
(−1)|α|hα+β

(
cQsub − cRsub

√
2h2

)(
qim − cQsub

√
2h2

)β
=
∑
β≥0

(−1)|β|

β!
hβ

(
cQsub − rjn√

2h2

)(
qim − cQsub

√
2h2

)β

Use exp
(
−||qim−rjn ||2

2h2

)
=

D∏
d=1

(
up(qim [d], rjn [d], cQsub [d]) + vp(qim [d], rjn [d], cQsub [d])

)
for 1 ≤ d ≤ D, where

upd(qim [d], rjn [d], cQsub [d]) =

p∑
nd=0

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]

√
2h2

)(
qmi

[d]− cQsub [d]
√

2h2

)nd
vpd(qim [d], rjn [d], cQsub [d]) =

∞∑
ni=p+1

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]

√
2h2

)(
qmi

[d]− cQsub [d]
√

2h2

)nd

These univariate functions respectively satisfy upd(qim [d], rjn [d], cQsub [d]) ≤ 1−rp+1

1−r and

vpd(qim [d], rjn [d], cQsub [d]) ≤ 1√
(p+1)!

rp+1

1−r , for 1 ≤ d ≤ D, achieving the multivariate

bound. The proof is similar as in the one given in Lemma 3.1.3.

Lastly, we present the error bound for evaluating a truncated local expansion

formed from a truncated far-field expansion, which requires that both the query node

and the reference node are “small”:
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Lemma 3.1.5. Error bound for evaluating a truncated local expansion con-

verted from an already truncated far-field expansion: A truncated far-field

expansion centered about the centroid cRsub of Rsub,

Φ̃(q; {(Rsub ,F(cRsub , p))}) =
∑
α≤p

Mα(Rsub , cRsub)hα

(
q− cRsub√

2h2

)

has the following local expansion about cQsub of Qsub for qim ∈ Qsub:

Φ̃(qim ; {(Rsub ,F(cRsub , p))}) =
∑
β≥0

Nβ({(M(Rsub , cRsub), (cQsub , p))})
(

qim−c
Qsub√

2h2

)β
where:

Nβ({(M(Rsub , cRsub), (cQsub , p))}) = (−1)|β|

β!

∑
α≤p

Mα(Rsub , cRsub)hα+β

(
c
Qsub−c

Rsub√
2h2

)
. Let

Φ̃(qim ; {(M(Rsub , cRsub), Ñ(cQsub , p))}) =
∑
β≤p

Ñβ({(M(Rsub , cRsub), (cQsub , p))})
(

qim−c
Qsub√

2h2

)β
,

a truncation of the local expansion of Φ̃(qim ; {(Rsub ,F(cRsub , p))}) after O(pD) terms.

If ∀qim ∈ Qsub satisfies ||qim − cQsub ||∞ < rh and ∀rjn ∈ Rsub satisfies ||rjn −

cRsub ||∞ < rh for r < 1
2
, then for any qim ∈ Qsub:∣∣∣Φ̃(qim ; {(M(Rsub , cRsub), Ñ(cQsub , p))})− Φ(qim ; Rsub)

∣∣∣
≤ |Rsub|

(1− 2r)2D

D−1∑
k=0

(
D

k

)
((1− (2r)p)2)k

(
((2r)p)(2− (2r)p)√

p!

)D−k
(3.1.16)

Proof. We define for 1 ≤ d ≤ D:

upd = up(qim [d], rjn [d], cQsub [d], cRsub [d])

vpd = vp(qim [d], rjn [d], cQsub [d], cRsub [d])

wpd = wp(qim [d], rjn [d], cQsub [d], cRsub [d])
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upd =

p∑
ni=0

(−1)ni

ni!

p∑
nj=0

1

nj!

(
cRsub [d]− rjn [d]√

2h2

)nj
(−1)nj

hni+nj

(
cQsub [d]− cRsub [d]√

2h2

)(
qim [d]− cQsub [d]√

2h2

)ni
vpd =

p∑
ni=0

(−1)ni

ni!

∞∑
nj=p+1

1

nj!

(
cRsub [d]− rjn [d]√

2h2

)nj
(−1)nj

hni+nj

(
cQsub [d]− cRsub [d]√

2h2

)(
qim [d]− cQsub [d]√

2h2

)ni
wpd =

∞∑
ni=p+1

(−1)ni

ni!

∞∑
nj=0

1

nj!

(
cRsub [d]− rjn [d]√

2h2

)nj
(−1)nj

hni+nj

(
cQsub [d]− cRsub [d]√

2h2

)(
qim [d]− cQsub [d]√

2h2

)ni
Note that exp

(
−||qim−rjn ||2

2h2

)
=

D∏
d=1

(upd + vpd + wpd) for 1 ≤ d ≤ D. Using the bound

for Hermite functions and the property of geometric series, we obtain:

upd ≤
p∑

ni=0

p∑
nj=0

(2r)ni(2r)nj =

(
1− (2r)p+1)

1− 2r

)2

vpd ≤
1√

(p+ 1)!

p∑
ni=0

∞∑
nj=p+1

(2r)ni(2r)nj =
1√

(p+ 1)!

(
1− (2r)p+1

1− 2r

)(
(2r)p+1

1− 2r

)

wpd ≤
1√

(p+ 1)!

∞∑
ni=p+1

∞∑
nj=0

(2r)ni(2r)nj =
1√

(p+ 1)!

(
1

1− 2r

)(
(2r)p+1

1− 2r

)

Therefore,∣∣∣∣∣
D∏
d=1

upd − exp

(
−||qim − rjn||2

2h2

)∣∣∣∣∣
≤(1− 2r)−2D

D−1∑
k=0

(
D

k

)
((1− (2r)p+1)2)k

(
((2r)p+1)(2− (2r)p+1)√

(p+ 1)!

)D−k

∣∣∣Φ̃(qim ; {(M(Rsub , cRsub), Ñ(cQsub , p))})− Φ(qim ; Rsub)
∣∣∣

≤ |Rsub|
(1− 2r)2D

D−1∑
k=0

(
D

k

)
((1− (2r)p+1)2)k

(
((2r)p+1)(2− (2r)p+1)√

(p+ 1)!

)D−k

[183] proposes an interesting idea of using Stirling’s formula (for any non-negative

50



Algorithm 3.1.1 FarFieldOrder(Qsub ,Rsub , τ): Determines the order of approx-
imation needed for evaluating a far-field expansion of the reference node Rsub .

r ← the widest length of the bounding box of Rsub divided by 2h.
if r ≥ 1 then

return ∞
else
p← 0
while p ≤ pmax do

if |Rsub |
(1−r)D

D−1∑
k=0

(
D
k

)
(1− rp+1)k

(
rp+1√
(p+1)!

)D−k
≤ τ then

return p
p← p+ 1

return ∞

integer n,
(
n+1
e

)n ≤ n!) to lift the node size constraint. This could allow approxi-

mation of larger regions that possibly contain more points. Unfortunately, the error

bounds derived in [183] were also incorrect. We have derived the necessary corrected

error bounds based on the techniques in [11]. However, we do not include the deriva-

tions here since using these bounds actually degraded performance in our algorithm.

3.1.6 Determining the Approximation Order

Note that Lemma 3.1.3, Lemma 3.1.4, and Lemma 3.1.5 upper-bound the approxima-

tion error
∣∣∣Φ̃(q; Rsub)− Φ(q,Rsub)

∣∣∣ given that we use O(pD) terms in the appropriate

expansion type. Nevertheless, all three lemmas can be re-phrased to answer the ques-

tion in reverse: given the maximum user-desired absolute error, what is the order of

approximation required to achieve it? This question rises naturally within our dual-

tree based algorithm that bounds the kernel sum approximation error on each part

in a partition of the reference dataset R.

Algorithm 3.1.1 shows how to determine the necessary order of the far-field expan-

sion for the given reference node Rsub such that
∣∣∣Φ̃(q; Rsub)− Φ(q,Rsub)

∣∣∣ ≤ τ . That

is, the approximation error due to the far-field expansion of Rsub is bounded by the

error allocated for approximating the contribution of Rsub . Using far-field expansion
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Algorithm 3.1.2 LocalAccumulationOrder(Qsub ,Rsub , τ): Determining the
order of approximation needed for forming a local expansion of the contribution from
the given reference node Rsub for the query node Qsub .

r ← the widest length of the bounding box of Qsub divided by 2h.
if r ≥ 1 then

return ∞
else
p← 0
while p ≤ pmax do

if |Rsub |
(1−r)D

D−1∑
k=0

(
D
k

)
(1− rp+1)k

(
rp+1√
(p+1)!

)D−k
≤ τ then

return p
p← p+ 1

return ∞

based approximation requires a “small” reference node. The algorithm computes the

ratio of the maximum side length of Rsub to twice the bandwidth h and determines

the least order required for achieving the maximum absolute error τ by evaluating

the right-hand side of Equation (3.1.14) iteratively on different values of p.

Algorithm 3.1.2 shows how to determine the necessary order of the local expansion

formed by directly accumulating the contribution of the given reference node Rsub

onto the given query node Qsub . This approximation method requires the query node

Qsub to have the maximum side length within twice the bandwidth. The algorithm

determines the least order required by using the right-hand side of Equation (3.1.15).

Finally, Algorithm 3.1.3 determines the necessary order of local expansion formed

by converting a truncated far-field expansion of the given reference node Rsub . In

contrast to the two previous algorithms, this one requires both the query node Qsub

and the reference node Rsub to have a maximum side length less than the bandwidth

h. After the node size requirements are satisfied, the least order required for achieving

τ absolute error is obtained by using the right-hand side of Equation (3.1.16).
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Algorithm 3.1.3 ConvertFarFieldToLocalOrder(Qsub ,Rsub , τ): Determin-
ing the order of approximation needed for evaluating a far-field expansion of the
given reference node Rsub .

r1 ← the widest length of the bounding box of Qsub divided by 4h.
r2 ← the widest length of the bounding box of Rsub divided by 4h.
r ← max{r1, r2}
if r ≥ 1

2
then

return ∞
else
p← 0
while p ≤ pmax do

if |Rsub |
(1−2r)2D

D−1∑
k=0

(
D
k

)
((1− (2r)p+1)2)k

(
((2r)p+1)(2−(2r)p+1)√

(p+1)!

)D−k
≤ τ then

return p
p← p+ 1

return ∞

3.1.7 Deriving the Hierarchical FGT

Until now, we have discussed the approximation methods developed for a non-hierarchical

version of fast Gauss transform described in [84]. In this section, we derive the two

additional translation operators that extend the original fast Gauss transform to use

a hierarchical data structure. Here we consider the reference tree, which enables the

consideration of the different portions of the reference set R at a different granular-

ity. Given the computed far-field moments of Rsub,L and Rsub,R, each centered at

cRsub,L and cRsub,R , how can we efficiently compute the far-field moments of Rsub cen-

tered at cRsub , the parent of Rsub,L and Rsub,R? The first operator allows the efficient

bottom-up pre-computation of the Hermite moments in the reference tree.

Lemma 3.1.6. Shifting a far-field expansion of a reference node to a new

center (F2F translation operator for the Gaussian kernel): Given the far-field

expansion centered at cRsub in Rsub:

Φ̃(q; {(Rsub ,F(cRsub , p))}) =
∑
α≤p

Mα(Rsub , cRsub)hα

(
q− cRsub√

2h2

)
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This same far-field expansion shifted to a new location c′ is given by:

Φ̃(q; {(Rsub ,F(cRsub , p))}) = Φ̃(q; {(Rsub ,F(c′, p))}) =
∑
γ≥0

Mγ(Rsub , c′)hγ

(
q− c′√

2h2

)
where

Mγ(Rsub , c′) =
∑

0≤α≤γ

1

(γ −α)!
Mα(Rsub , cRsub)

(
cRsub − c′√

2h2

)γ−α
(3.1.17)

Proof. Replace the Hermite part of the expansion by a new Taylor series:

Φ̃(q; {(Rsub ,F(cRsub , p))}) =
∑
α≤p

Mα(Rsub , cRsub )hα

(
q− cRsub√

2h2

)

=
∑
α≤p

Mα(Rsub , cRsub )
∑
β≥0

1

β!

(
c′ − cRsub√

2h2

)β
(−1)|β|hα+β

(
q− c′√

2h2

)

=
∑
α≤p

∑
β≥0

Mα(Rsub , cRsub )
1

β!

(
c′ − cRsub√

2h2

)β
(−1)|β|hα+β

(
q− c′√

2h2

)

=
∑
α≤p

∑
β≥0

Mα(Rsub , cRsub )
1

β!

(
cRsub − c′√

2h2

)β
hα+β

(
q− c′√

2h2

)

=
∑
γ≤p

 ∑
0≤α≤γ

1

(γ −α)!
Mα(Rsub , cRsub )

(
cRsub − c′√

2h2

)γ−αhγ (q− c′√
2h2

)
where γ = α+ β.

Using Lemma 3.1.6, we can compute the far-field moments of Rsub centered at cRsub

by translating the moments {Mγ(Rsub,L, cRsub,L)}γ≤p and {Mγ(Rsub,R, cRsub,R)}γ≤p to

form the moments {Mγ(Rsub,L, cRsub)}γ≤p and {Mγ(Rsub,R, cRsub)}γ<p. The far-field

moments of Rsub = Rsub,L ∪Rsub,R are {Mγ(Rsub,L, cRsub) +Mγ(Rsub,R, cRsub)} and

Φ̃(q; {(R,F (cRsub , p))}) =
∑
γ≤p

(Mγ(RL, cRsub ) +Mγ(RR, cRsub ))hγ

(
q− cRsub√

2h2

)
Computing eachMγ(Rsub,L, cRsub) fromMγ(Rsub,L, cRsub,L) (and eachMγ(Rsub,R, cRsub)

from Mγ(Rsub,R, cRsub,R)) requires iterating over at most O(pD) terms. This operation

runs in O(Dp2D), which can be more efficient than computing the far-field moments

of Rsub centered at cRsub from scratch (which is O(|Rsub|DpD)).

The next translation operator acts as a “clean-up” routine in a hierarchical al-

gorithm. Since we can approximate at different scales in the query tree, we must
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Figure 23: Given the far-field moments of Rsub,L and Rsub,R illustrated in the first two
tables, Theorem 3.1.6 can re-center each set of far-field moments of Rsub,L and Rsub,R

at centroid cRsub . The re-centered far-field moments are shown in the third table with
two numbers, each contributed by Rsub,L and Rsub,R. The far-field moments of Rsub

are then computed by adding up the two re-centered moments entry-wise.

somehow combine all the approximations at the end of the computation. By per-

forming a breadth-first traversal of the query tree, the L2L operator shifts a node’s

local expansion to the centroid of each child.

Lemma 3.1.7. Shifting a combined local expansion of a query node to a

new center (L2L translation operator for Gaussian kernel): Given a combined

local expansion centered at cQsub of the given query node Qsub:

Φ̃(q;RDL(Qsub) ∪RF2L(Qsub)) =
∑
β≤p

Ñβ(cQsub ,RDL(Qsub) ∪RF2L(Qsub))

(
q− cQsub

√
2h2

)β
Shifting this local expansion to the new center c′ ∈ Qsub yields:

Φ̃(q;RDL(Qsub) ∪RF2L(Qsub))

=
∑
α≤p

∑
β≥α

β!

α!(β −α)!
Ñβ(cQsub ,RDL(Qsub) ∪RF2L(Qsub))

(
c′ − cQsub

√
2h2

)β−α(q− c′√
2h2

)α
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Figure 24: Given the local moments centered at cQsub , Theorem 3.1.7 can re-center
them at the two centroids cQsub,L and cQsub,R .

where we denote

Ñβ(c′,RDL(Qsub) ∪RF2L(Qsub))

=
∑
β≥α

β!

α!(β −α)!
Ñβ(cQsub ,RDL(Qsub) ∪RF2L(Qsub))

(
c′ − cQsub

√
2h2

)β−α
(3.1.18)

Proof. Use the multinomial theorem to expand about the new center c′:

Φ̃(q;RDL(Qsub) ∪RF2L(Qsub))

=
∑
β≤p

Ñβ(cQsub ,RDL(Qsub) ∪RF2L(Qsub))

(
q− cQsub

√
2h2

)β

=
∑
β≤p

∑
α≤β

Ñβ(cQsub ,RDL(Qsub) ∪RF2L(Qsub))
β!

α!(β −α)!

(
c′ − cQsub

√
2h2

)β−α(
q− c′√

2h2

)α
whose summation order can be interchanged to achieve the result.
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Using Lemma 3.1.7, we can shift the local moments of Qsub centered at cQsub to

a different expansion center, such as an expansion center of one of the child nodes

of Qsub . Let p be the maximum approximation order used among the reference

nodes pruned via far-to-local translation (RF2L(Qsub)) and direct local accumulation

(RDL(Qsub)). The local moment propagation to both child nodes of Qsub is achieved

by the following operations:

{Ñβ(cQsub,L ,RDL(Qsub,L) ∪RF2L(Qsub,L))}β≤p

←{Ñβ(cQsub,L ,RDL(Qsub,L) ∪RF2L(Qsub,L))}β≤p + {Ñβ(cQsub,L ,RDL(Qsub) ∪RF2L(Qsub))}β≤p

{Ñβ(cQsub,R ,RDL(Qsub,R) ∪RF2L(Qsub,R))}β≤p

←{Ñβ(cQsub,R ,RDL(Qsub,R) ∪RF2L(Qsub,R))}β≤p + {Ñβ(cQsub,R ,RDL(Qsub) ∪RF2L(Qsub))}β≤p

where the addition operation is an element-wise operation over multi-index positions.

3.1.8 Choosing the Best Approximation Method

Suppose we are given a query node Qsub and a reference node Rsub pair during the

invocation of Algorithm 3.1.10. CanSummarize function for the higher-order DFGT

algorithm has four approximation methods available: A ∈ {D, Ñ(c, p),F(c, p),N(c, p)}

(see Section 3.1.2). Because we would like to avoid exhaustive computations, the

higher-order DFGT algorithm uses only three of the approximation methods and

defers exhaustive computations until query/reference leaf pairs are encountered. Al-

gorithm 3.1.4 tests whether the given query node and reference node pair can be

approximated by evaluating the far-field moments of Rsub , computing direct local

accumulation due to Rsub , and translating some of the terms that constitute the

far-field moments of Rsub (far-field-to-local translation operator) and evaluates the

asymptotic cost of each approximation. Algorithm 3.1.4 then determines the approx-

imation method with the lowest asymptotic cost. This idea was originally introduced

in [84] in the description of the original fast Gauss transform algorithm. The key
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Algorithm 3.1.4 ChooseBestMethod(Qsub ,Rsub , τ): Chooses the FMM-type ap-
proximation with the least cost for a query and reference node pair.

pF ← FarFieldOrder(Qsub ,Rsub , τ)
pD ← LocalAccumulationOrder(Qsub ,Rsub , τ)
pT ← ConvertFarFieldToLocalOrder(Qsub ,Rsub , τ)
cF ← |Qsub|DpF+1, cD ← |Rsub|DpD+1, cT ← D2pT+1, cE ← D|Qsub||Rsub|
if cF = min{cF , cD, cT , cE} then

return F(cRsub , pF )
else if cD = min{cF , cD, cT , cE} then

return N(cQsub , pD)
else if cT = min{cF , cD, cT , cE} then

return Ñ(cQsub , pT )
else

return D

difference is that even if Algorithm 3.1.4 returns D (when none of the other ap-

proximation methods can beat the cost of the exhaustive method), our hierarchical

algorithm will not default to exhaustive evaluations and will consider the query points

and reference points at a finer granularity, as shown in Algorithm 3.1.10.

Figure 25: Four ways of approximating the contribution of a reference node to a
query node. Top left: exhaustive computations (few reference/few query points);
Top right: far-field moment evaluating (many reference/few query points); Bottom
left: direct local moment accumulation (few reference/many query points); Bottom
right: far-field-to-local translation (many reference/many query points).

3.1.9 Hierarchical FGT

Given the analytical machinery developed in the previous section, we now describe

how to extend the centroid-based dual-tree [80, 82] to do higher-order approximations.
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Algorithm 3.1.5 DFGTMain(Q,R): The main KDE routine.

BuildKdTree(Q), BuildKdTree(R)
DFGTInitQ(Q), DFGTInitR(R), DFGT(Q,R), DFGTPost(Q)

The main structure of the algorithm is shown in Algorithm 3.1.5. We provide only a

high-level overview of our algorithm and defer implementation details to Appendix.

Initialization of the query tree. Each query node maintains a vector storing

(pmax + 1)D terms, where pmax is a pre-determined limit on the approximation order2

depending on the dimensionality of the query set Q and the reference set R. For the

experimental results, we have fixed pmax = 5 for D = 2, pmax = 3 for D = 3, pmax = 1

for D = 4 and D = 5, pmax = 0 for D ≥ 6.

Algorithm 3.1.6 DFGTInitQ(Qsub): Initializes query bound summary statistics.

{Initialize the node bound summary statistics.}
Φl(Qsub ×R)← 0, Φu(Qsub ×R)← |R|, ∆l(Qsub)← 0, ∆u(Qsub)← 0
{Initialize translated local moments to be a vector of length (pmax + 1)D.}
Ñ0≤i<(pmax+1)D(Qsub)← 0

if Qsub is a leaf node then
{Initialize for each query point.}
for each qim ∈ Qsub do

Φl(qim ; R)← 0, Φu(qim ; R)← |R|
Φ̃(qim ; R)← 0, Φ̃(qim ; RE(qim))← 0

Φ̃(qim ; RDF(qim))← 0, Φ̃(qim ; RDL(qim) ∪RF2L(qim))← 0
else

DFGTInitQ(Qsub,L), DFGTInitQ(Qsub,R)

Pre-computation of far-field moments. Before the main KDE computation can

begin, we pre-compute the far-field moments of each reference node in the reference

tree up to (pmax + 1)D terms. We show how to efficiently pre-compute the far-field

moments of each reference node in the reference tree in Algorithm 3.1.7. The algo-

rithm uses Equation (3.1.11) for the leaf node and Equation (3.1.17) for translating

2We impose this limit because the number of terms scales exponentially with the dimensionality
D, O(pD).
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Algorithm 3.1.7 DFGTInitR(Rsub): Pre-computes far-field moments.

{Initialize the far-field moments of Rsub to be empty.}
for i = 0 to i < (pmax + 1)D do
MPositionToMultiindex(i,pmax )

(Rsub , cRsub)← 0
if R is a leaf node then
{Accumulate far-field moment from each point (Equation (3.1.11)).}
AccumulateFarFieldMoment(Rsub)

else
{Recursively compute the moments of the child nodes and combine them.}
DFGTInitR(Rsub,L), DFGTInitR(Rsub,R)
TransFarToFar(Rsub,L,Rsub), TransFarToFar(Rsub,R,Rsub)

the moments of the child nodes for the internal node case.

Determining the prunability of the given query and reference pair (shown

in Algorithm 3.1.9). The function Summarize includes calls to the followings:

1. EvalFarFieldExpansion: evaluates the far-field moments stored in Rsub at

each query point in Qsub up to (pF + 1)D terms. See Algorithm A.0.8.

2. AccumulateDirectLocalMoment: computes direct local moment contri-

bution of R centered at cQsub in Qsub . See Algorithm A.0.10.

3. TransFarToLocal: translates the far-field moments of Rsub up to (pT + 1)D

terms to the local moment centered cQsub in Qsub . See Algorithm A.0.9.

Algorithm 3.1.8 CanSummarize(Qsub ,Rsub , ε): Determines the prunability of the
given query node Qsub and reference node Rsub

return ChooseBestMethod
(
Qsub ,Rsub , ε|R

sub |Φl,new (Qsub×R)
|R|

)
6= D

Dual-tree Recursion. Algorithm 3.1.10 shows the basic structure of the dual-tree

based KDE computation. This procedure is first called with Q and R as the root

nodes of the query and the reference tree respectively. CanSummarize takes three
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Algorithm 3.1.9 Summarize(Qsub ,Rsub): Summarizes the contribution of Rsub .

{Add bound changes.}
∆l(Qsub)← ∆l(Qsub) + δl(Qsub ,Rsub), ∆u(Qsub)← ∆u(Qsub) + δu(Qsub ,Rsub)
if A is of the form F(cRsub , pF ) then

EvalFarFieldExpansion(Rsub ,Qsub , pF )
else if A is of the form N(cQsub , pD) then

AccumulateDirectLocalMoment(Rsub ,Qsub , pD)
else

TransFarToLocal(Rsub ,Qsub , pT )

parameters: the current query node Qsub , the current reference node Rsub , and the

global relative error tolerance ε. This function tests whether the the contribution of

the given reference node for each query point in the given query node can be ap-

proximated within the error tolerance. If the approximation is not possible, then the

algorithm continues to consider the query and the reference data at a finer granular-

ity. The basic idea is to terminate the recursion as soon as possible by considering

large “chunks” of the query data and the reference data and avoiding the number of

exhaustive leaf-leaf computations. We can achieve this if we utilize approximation

schemes that yield high accuracy and have cheap computational costs.

Each prune made for a pair of a query and a reference node is summarized

in the given query node by incorporating the lower and the upper bound changes

δl(Qsub ,Rsub) and δu(Qsub ,Rsub) contributed by the reference node into ∆l(Qsub)

and ∆u(Qsub). These two bound updates due to a prune can be regarded as a new

piece of information which is known only locally to the given query node Qsub . All

of the bounds in the entire subtree of Qsub should reflect this information. One way

to achieve this effect is to pass the lower bound and the upper bound changes owned

by Qsub (i.e., ∆l(Qsub) and ∆u(Qsub)) to Qsub ’s immediate children, whenever the

algorithm needs to consider the query dataset at a finer granularity by recursing to

the left and the right child of Qsub . See Figure 16.

61



Algorithm 3.1.10 DFGT(Qsub ,Rsub): The core dual-tree routine for computing
KDE.
δl(Qsub ,Rsub) = |Rsub|k(du(Qsub ,Rsub))
δu(Qsub ,Rsub) = |Rsub|(k(dl(Qsub ,Rsub))− 1)
{Add postponed contributions/bound changes from the current pair.}
Φl,new(Qsub ×R)← Φl,new(Qsub ×R) + ∆l(Qsub) + δl(Qsub ,Rsub)
Φu,new(Qsub ×R)← Φu,new(Qsub ×R) + ∆u(Qsub) + δu(Qsub ,Rsub)
if CanSummarize(Qsub ,Rsub , ε) then

Summarize(Qsub ,Rsub)
else

if Qsub is a leaf node then
if Rsub is a leaf node then

DFGTBase(Qsub ,Rsub)
else

DFGT(Qsub ,Rsub,L),DFGT(Qsub ,Rsub,R)
else
{Push down postponed bound changes owned by Qsub to the children.}
∆l(Qsub,L)← ∆l(Qsub,L) + ∆l(Qsub), ∆l(Qsub,R)← ∆l(Qsub,R) + ∆l(Qsub)
∆u(Qsub,L)← ∆u(Qsub,L) + ∆u(Qsub), ∆u(Qsub,R)← ∆u(Qsub,R) + ∆u(Qsub)
∆l(Qsub)← 0, ∆u(Qsub)← 0
if Rsub is a leaf node then

DFGT(Qsub,L,Rsub), DFGT(Qsub,R,Rsub)
else

DFGT(Qsub,L,Rsub,L), DFGT(Qsub,L,Rsub,R)
DFGT(Qsub,R,Rsub,L), DFGT(Qsub,R,Rsub,R)
{Refine the bounds based on the recursion results.}
Φl(Qsub×R)← min{Φl(Qsub,L×R)+∆l(Qsub,L),Φl(Qsub,R×R)+∆l(Qsub,R)}
Φu(Qsub × R) ← max{Φu(Qsub,L × R) + ∆u(Qsub,L),Φu(Qsub,R × R) +
∆u(Qsub,R)}

Base-case Computation. If a given leaf query and leaf reference node pair could

not be pruned, then DFGTBase (shown in Algorithm 3.1.11) is called. Because all

kernel evaluations are computed exactly, we can refine the bound summary statistics

of the given query node Q (that is, Φl(Qsub × R) and Φu(Qsub × R)) further and

hence we reset them to ∞ and −∞ respectively. For each query point qim ∈ Qsub ,

we first incorporate the postponed bound changes passed down from the ancestor

node of Qsub . We loop over each reference point rjn ∈ Rsub and compute the kernel

value between qim and rjn and accumulate the lower bound Φl(qim ; R), the kernel
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Algorithm 3.1.11 DFGTBase(Qsub ,Rsub): Computes exact contribution of Rsub

to Qsub .

Φl(Qsub ×R)←∞, Φu(Qsub ×R)← −∞
for each qim ∈ Qsub do
{Add postponed changes passed down from the ancestor node of Q.}
Φl(qim ; R)← Φl(qim ; R) + ∆l(Qsub), Φu(qim ; R)← Φu(qim ; R) + ∆u(Qsub)
for each rjn ∈ Rsub do
v ← k(‖qim − rjn‖), Φl(qim ; R)← Φl(qim ; R) + v

Φ̃(qim ; RE(qim))← Φ̃(qim ; RE(qim)) + v
Φu(qim ; R)← Φu(qim ; R) + (v − 1)
{Refine the bound summary statistics owned by Qsub .}
Φl(Qsub ×R)← min{Φl(Qsub ×R),Φl(qim ; R)}
Φu(Qsub ×R)← max{Φu(Qsub ×R),Φu(qim ; R)}

∆l(Qsub)← 0, ∆u(Qsub)← 0

sum computed exhaustively Φ̃(qim ; RE(qim)), and the upper bound Φu(qim ; R)

We subtract one for updating Φu(qim ; R) for correcting the prior assumption that

k(||qim − rjn||) = 1, while the lower bound Φl(qim ; R) and Φ̃(qim ; RE(qim)) are incre-

mented by k(||qim−rjn||). As the contribution of the reference node Rsub is added onto

the query point qim ’s sum, we can refine the bound summary statistics owned by Qsub

such that Φl(Qsub×R) = min
qim∈Qsub

Φl(qim ; R) and Φu(Qsub×R) = max
qim∈Qsub

Φu(qim ; R).

Finally, we reset the postponed bound changes stored in Qsub to zero.

Post-processing (shown in Algorithm 3.1.12). For the non-leaf case, the local-to-

local translation operator (TransLocalToLocal) is called to re-center the local

moments at the current level and passes them down to the child nodes. For the leaf-

case, EvalLocalExpansion is called to convert local moments to a single scalar

that represents the contribution to a given query point.

3.1.10 Basic Properties of DFGT Algorithms

Theorem 3.1.8. Lower/upper bounds are maintained properly at all times for each

q ∈ Qsub and each query node Qsub during the function call DFGTMain.
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Algorithm 3.1.12 DFGTPost(Qsub): The post-processing routine.

if Qsub is a leaf node then
Φl(Qsub ×R)←∞, Φu(Qsub ×R)← −∞
for each qim ∈ Qsub do
{Add bound changes for the query node at the given query point qim .}
Φl(qim ; R)← Φl(qim ; R) + ∆l(Qsub), Φu(qim ; R)← Φu(qim ; R) + ∆u(Qsub)
{Refine summary statistics for lower and upper bounds.}
Φl(Qsub ×R)← min{Φl(Qsub ×R),Φl(qim ; R)}
Φu(Qsub ×R)← min{Φu(Qsub ×R),Φu(qim ; R)}
{Compute the contributions from the accumulated local moments.}
Φ̃(qim ; RF2L(qim))← EvalLocalExpansion(Qsub)
{Sum the contribution from the local moments (direct or translated), the far-
field evaluations, and exhaustive evaluations.}
Φ̃(qim ;R)← Φ̃(qim ;RDL(qim) ∪RF2L(qim)) + Φ̃(qim ;RDF(qim)) + Φ̃(qim ;RE)

∆l(Qsub)← 0, ∆u(Qsub)← 0, Ñ(Qsub)← 0
else

TransLocalToLocal(Qsub ,Qsub,L), TransLocalToLocal(Qsub ,Qsub,R)
∆l(Qsub,L)← ∆l(Qsub,L) + ∆l(Qsub), ∆l(Qsub,R)← ∆l(Qsub,R) + ∆l(Qsub)
∆u(Qsub,L)← ∆u(Qsub,L) + ∆u(Qsub), ∆u(Qsub,R)← ∆u(Qsub,R) + ∆u(Qsub)

Ñ(Qsub)← 0, ∆l(Qsub)← 0, ∆u(Qsub)← 0
DFGTPost(QL), DFGTPost(QR)
{Refine the bounds based on the results of the recursion.}
Φl(Qsub ×R)← min{Φl(Qsub,L ×R),Φl(Qsub,R ×R)}
Φu(Qsub ×R)← max{Φu(Qsub,L ×R),Φu(Qsub,R ×R)}

Proof. We show that the bounds are maintained properly for three main parts in the

function DFGTMain: DFGTInitQ, DFGT, and DFGTPost.

The function call DFGTInitQ: It is clear that for all qi ∈ Q, 0 = Φl(qi; R) ≤

Φ(qi; R) ≤ Φu(qi; R) = |R|. Furthermore, for each query node Q, 0 = Φl(Qsub×R) ≤

Φ(qim ; R) ≤ Φu(Qsub ×R) = |R| for each qim ∈ Qsub .

The function call DFGTBase: Let Qsub and Rsub be the query node and the reference

node respectively. For each query point qim ∈ Qsub , Φl(qim ; R) is incremented by

∆l(Qsub) +
∑

rjn∈Rsub

k(||qim − rjn||), and Φu(qim ; R) by ∆u(Qsub)+∑
rjn∈Rsub

(k(||qim − rjn ||)− 1); this operation incorporates the passed-down contribu-

tion for qim ∈ Qsub , and un-does the assumption made during the initialization phase
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of DFGTInitQ. Φl(Qsub ×R) and Φu(Qsub ×R) are updated to be the minimum

among Φl(qim ; R) and the maximum among Φu(qim ; R) respectively. The postponed

bound changes ∆l(Qsub) and ∆u(Qsub) are cleared to avoid double-counting when

Qsub may be visited later.

The function call DFGT: We induct on the number of points owned by the query

node Qsub and the reference node Rsub in consideration (i.e. |Qsub|+|Rsub|). The only

possible places that change Φl(qim ; R), Φu(qim ; R), Φl(Qsub×R) and Φu(Qsub×R) are

the call to the base case function DFGTBase and the last two lines of the function

DFGT. The correctness of DFGTBase function is proven already, so we consider the

second case. The two function calls DFGT(Qsub,L,Rsub) and DFGT(Qsub,R,Rsub)

(in case R is a leaf node) and the four function calls DFGT(Qsub,L,Rsub,L),

DFGT(Qsub,L,Rsub,R), DFGT(Qsub,R,Rsub,L), and DFGT(Qsub,R,Rsub,R) (in case

Rsub is an internal node) are smaller subproblems than (Qsub , (Rsub) pair. By the

induction hypothesis, these calls maintain the lower and the upper bounds properly.

The lower bound is set to the minimum of the “best” lower bound owned by the

children of Qsub : min{Φl(Qsub,L × R) + ∆l(Qsub,L),Φl(Qsub,R × R) + ∆l(Qsub,R)}.

Similarly, the upper bound is set to the maximum of the “best” upper bound owned by

the children of Qsub : max{Φu(Qsub,L×R)+∆u(Qsub,L),Φu(Qsub,R×R)+∆u(Qsub,R)}.

The function call DFGTPost: We again induct on the number of points owned

by the query node Qsub passed in as the argument to this function. If the query

node Qsub is a leaf node, each query point qim ∈ Qsub incorporates the passed-down

bound changes ∆l(Qsub) and ∆u(Qsub). The bounds Φl(Qsub × R) and Φu(Qsub ×

R) are (correctly) set to the minimum among Φl(qim ; R) and the maximum among

Φu(qim ; R). If Qsub is not a leaf node: we know the sub-calls DFGTPost(Qsub,L)

and DFGTPost(Qsub,R) maintains correct lower and upper bounds by the induction
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hypothesis since Qsub,L and Qsub,R contain a smaller number of points. Setting the

lower and upper bounds for Qsub by the operations: Φl(Qsub×R)← min{Φl(Qsub,L×

R),Φl(Qsub,R×R)}, Φu(Qsub×R)← max{Φu(Qsub,L×R),Φu(Qsub,R×R)} is valid.

Theorem 3.1.9. After calling DFGTPost (Algorithm 3.1.12) in DFGTMain (Al-

gorithm 3.1.5), each query point qi ∈ Q accounts for every reference point rj ∈ R in

its Gaussian kernel sum approximation Φ̃(qi; R).

Proof. In Algorithm 3.1.10, for each qi ∈ Q, each rj ∈ R is either accounted by an

exhaustive computation in DFGTBase or a prune in Summarize. All exhaustive

computations for qi ∈ Q directly update Φ̃(qi; R
E(qi)), while any pruned contri-

butions will be incorporated into each Φ̃(qi; R
F2L(qi)) (hence into Φ̃(qi,R(qi))) and

when they are pushed down (to the leaf node to which qi belongs) during the DFGT

recursion or DFGTPost.

Theorem 3.1.10. For each query point qi ∈ Q, the approximated kernel sum Φ̃(qi; R)

satisfies the global relative error tolerance ε.

Proof. For simplicity, let us limit the available approximation methods to A ∈ {D, Ñ(c, 0)}

where D denotes the exhaustive computation and Ñ(c, 0) denotes the centroid-based

approximation about c.

Given qi ∈ Q, let Q′ be the (unique) leaf node that owns qi. Let RF2L(qi) =

{RTa}Naa=1 denote the set of reference nodes whose kernel sum contribution were ac-

counted via centroid approximation and RE(qi) = {REb}
Nb
b=1 the set of reference nodes

whose kernel sum contribution were computed exhaustively. Then it is clear that

R =

(
Na⋃
a=1

RTa

)
∪
(
Nb⋃
b=1

REb

)
with RTa′ ∩RTa′′ = ∅, REb′ ∩REb′′ = ∅, RTa′ ∩REb′ = ∅

for 1 ≤ a′, a′′ ≤ Na and 1 ≤ b′, b′′ ≤ Nb. Let QTa be the query node that owns qi

and is considered with the reference node RTa and pruned. Let Φl(a)(QTa × R) be

a “snapshot” of the running lower bound on the kernel sum for query points owned
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by QTa at the time the query node QTa and the reference node RTa were considered

(and subsequently pruned). By the triangle inequality:∣∣∣Φ̃(qi;R)− Φ(qi;R)
∣∣∣

=

∣∣∣∣∣Φ̃
(
qi;

(
Na⋃
a=1

{
(RTa , Ñ(cQsub , 0))

})
∪

(
Nb⋃
b=1

{
(REb ,D)

}))
− Φ

(
qi;

(
Na⋃
a=1

RTa

)
∪

(
Nb⋃
b=1

REb

))∣∣∣∣∣
≤

∣∣∣∣∣
(

Na∑
a=1

Φ̃
(
qi; {(RTa , Ñ(cQsub , 0))}

)
− Φ(qi;R

Ta)

)
+

(
Nb∑
b=1

Φ̃
(
qi, {(REb ,D)}

)
− Φ(qi,R

Eb)

)∣∣∣∣∣
≤

Na∑
a=1

∣∣∣Φ̃(qi; {(RTa , Ñ(cQsub , 0))}
)
− Φ(qi;R

Ta)
∣∣∣+

Nb∑
b=1

∣∣∣Φ̃ (qi; {(REb ,D)}
)
− Φ(qi;R

Eb)
∣∣∣

≤
Na∑
a=1

|RTa |max


∣∣k(du(QTa ,RTa))− k(||cQTa − cRTa ||)

∣∣ ,∣∣k(dl(QTa ,RTa))− k(||cQTa − cRTa ||)
∣∣
+

Nb∑
b=1

|REb | · 0

≤
Na∑
a=1

|RTa |ε
|R|

Φl(a)(QTa ×R) +

Nb∑
b=1

|REb |ε
|R|

Φl(b)(Q′ ×R)

≤
Na∑
a=1

|RTa |ε
|R|

Φ(qi;R) +

Nb∑
b=1

|REb |ε
|R|

Φ(qi;R) ≤ εΦ(qi;R)

The proof can be easily extended to the case with four available approximation meth-

ods A ∈ {D, Ñ(c, p),F(c, p),N(c, p)}

3.2 Experimental Results

We evaluated empirical performance of six algorithms:

• Naive: the brute-force algorithm (Algorithm 3.3.1).

• FFT: Fast fourier transform based kernel density estimate [192].

• FGT: Fast Gauss transform [84].

• IFGT: improved fast Gauss transform [201, 154].

• DFD: the dual-tree centroid-based approximation method [80, 82].

• DFGT: our new algorithm (Algorithm 3.1.5).

We used the following six real-world datasets:
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Table 1: Empirical comparison of six different algorithms on different magnitudes of
bandwidths on three different datasets. Each entry in the table has a timing number
(if finite), ∞ symbol (if no parameter tweaking could achieve the error tolerance), X
symbol (if the algorithm segfaulted).

Alg\Scale 0.001 0.01 0.1 1 10 100 1000 Σ

sj2-50000-2, D = 2, N = 50000, h∗CVLS = 0.00139506

Naive 241 241 241 241 241 241 241 1687

FFT ∞ ∞ ∞ ∞ ∞ 1.02 0.03 ∞
FGT X X X 2.63 1.48 0.33 0.18 X

IFGT ∞ ∞ ∞ 155 7.26 0.40 0.03 ∞
DFD 1.58 1.63 2.14 4.33 39.7 29.5 1.51 80.39

DFGT 0.43 0.47 1.00 3.48 21 2.48 0.96 29.8

colors50k, D = 2, N = 50000, h∗CVLS = 0.0016911

Naive 241 241 241 241 241 241 241 1687

FFT ∞ ∞ ∞ ∞ ∞ ∞ 0.16 ∞
FGT X X X 120 10 4 0.22 X

IFGT ∞ ∞ ∞ ∞ ∞ 0.54 0.07 ∞
DFD 1.62 1.76 2.36 12.5 102 17.0 2.41 139.65

DFGT 0.44 0.60 1.21 15.6 20 4.20 0.67 42.7

bio5, D = 5, N = 103010, h∗CVLS = 0.000308646

Naive 1310 1310 1310 1310 1310 1310 1310 9170

FFT X X X X X X X X

FGT X X X X X X X X

IFGT ∞ ∞ ∞ ∞ ∞ ∞ 1.04 ∞
DFD 0.34 0.36 0.92 6.31 113 643 125 888.93

DFGT 0.35 0.37 0.94 6.51 102 304 121 535.17

• sj2-50000-2: two-dimensional astronomy position dataset.

• colors50k: two-dimensional astronomy color dataset.

• bio5: five-dimensional pharmaceutical dataset.

• edgsc-radec: two-dimensional astronomy angle dataset.

• mockgalaxy-D-1M: three-dimensional astronomy position dataset.

• psf1-psf4-stargal-2d-only: two-dimensional astronomy dataset.

Note that the last three datasets contain over 1 million points and demonstrate the

scalability of our fast algorithm. For each dataset, we evaluated the empirical perfor-

mance on computing kernel density estimates at seven different bandwidths ranging
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Table 2: Empirical comparison of three algorithms on different magnitudes of band-
widths on three larger datasets. All timings are reported in seconds.

Alg\Scale 0.001 0.01 0.1 1 10 100 1000 Σ

edsgc-radec, D = 2, N = 1495877, h∗CVLS = 0.000473061

Naive 2.2e5 2.2e5 2.2e5 2.2e5 2.2e5 2.2e5 2.2e5 1.5e6

DFD 4.9e1 4.9e1 6.3e1 1e2 1.5e3 2e4 1.3e3 2.3e4

DFGT 6.8e0 7.4e0 2.1e1 5.9e1 1.7e3 3.5e3 1.4e2 5.4e3

mockgalaxy-D-1M, D = 3, N = 1000000, h∗CVLS = 0.00010681

Naive 9.6e4 9.6e4 9.6e4 9.6e4 9.6e4 9.6e4 9.6e4 6.7e5

DFD 2.4e0 2.4e0 2.6e0 1.5e1 9.7e1 1.7e2 4.4e3 4.7e3

DFGT 2.4e0 2.4e0 2.6e0 1.5e1 1.1e2 2.1e2 4e3 4.3e3

psf1-psf4-stargal-2d-only, D = 2, N = 3056092, h∗CVLS = 0.00489463

Naive 9e5 9e5 9e5 9e5 9e5 9e5 9e5 6.3e6

DFD 1.1e2 1.5e2 1.2e3 2.2e4 3.9e4 2.9e3 1.1e2 6.5e4

DFGT 3.9e1 8.1e1 1.4e3 1.6e4 2.3e3 1.9e2 4.2e1 1.9e4

from 10−3 to 103 times the optimal bandwidths according to the standard least-

squares cross-validation score [170]. We measured the time required for computing

KDE estimates that guarantee the global relative error:
∣∣∣Φ̃(qi; R)− Φ(qi; R)

∣∣∣ ≤
εΦ(qi; R). We used ε = 0.01. Each entry in the table has a timing number (if finite),

∞ symbol (if no parameter tweaking could achieve the error tolerance), X sym-

bol (if the algorithm segfaulted; this is common in grid-based algorithms in higher

dimension). The entries under Σ symbol denote the total time for least-squares cross-

validation. Note that the FGT ensures:
∣∣∣Φ̃(qi; R)−G(qi; R)

∣∣∣ ≤ τ . Therefore, we

first set τ = ε, halving τ until the error tolerance ε was met; the time for verifying

the global error guarantee (which includes comparison against the naively computed

results) was not included in the timing. For the FFT, we started with 16 grid points

along each dimension, and doubled the number of grid points until the error guarantee

was met. For the IFGT, we took the most recent version of the algorithm that does

automatic parameter tuning described in [154]. Our algorithms based on dual-tree

methods guarantees the error bound automatically via a direct parameter ε.

The naive timings for the last datasets have been extrapolated from the perfor-

mances on the smaller datasets. Our results demonstrate that our new algorithm can
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Figure 26: Top: It is conceptually easy to visualize the moments to be stored in a
multi-dimensional array. Each dimension iterates over (pmax +1) scalars, a total count
of (pmax + 1)D scalars. Bottom: The linear layout for the storing the coefficients.

be as 15 times as fast as the original dual-tree algorithm. As expected, the grid-based

original fast Gauss transform and the fast Fourier transformed based method fails in

dimensions above two.

3.3 Applications in Nonparametric Density Estimation

Kernel density estimation (KDE) is the most widely used and studied nonparametric

density estimation method. The model is the reference dataset R itself, containing

the reference points indexed by natural numbers. Assume a local kernel function k(·)

centered upon each reference point, and its scale parameter h (the ’bandwidth’). The

common choices for k(·) include the spherical, Gaussian and Epanechnikov kernels.

We are given the query dataset Q containing query points whose densities we want

to predict. The density estimate at the i-th query point qi ∈ Q is:

p̂h(qi) =
1

|R|
∑
rj∈R

1

VDh
k (||qi − rj||) (3.3.1)

where VDh =
∞∫
−∞

k(z)dz, a normalizing constant depending on D and h. With no

assumptions on the true underlying distribution, if h → 0 and |R|h → ∞ and k(·)
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Algorithm 3.3.1 NaiveKDE(Q,R): A brute-force computation of KDE.

for each qi ∈ Q do
Φ(qi; R)← 0
for each rj ∈ R do

Φ(qi; R)← Φ(qi; R) + k(||qi − rj||)
Normalize each G(qi,R)

satisfy some mild conditions: ∫
|p̂h(x)− p(x)|dx→ 0 (3.3.2)

as |R| → ∞ with probability 1. As more data are observed, the estimate converges to

the true density. In order to build our model for evaluating the densities at each qi ∈

Q, we need to find the initially unknown asymptotically optimal bandwidth h∗ for the

given reference dataset R. There are two main types of cross-validation methods for

selecting the asymptotically optimal bandwidth. Cross-validation methods use the

reference dataset R as the query dataset Q (i.e. Q = R). Likelihood cross-validation

is derived by minimizing the Kullback-Leibler divergence
∫
p(x) log p(x)

p̂h(x)
dx, which

yields the score:

CVLK(h) =
1

|R|
∑
rj∈R

log p̂h,−j(rj) (3.3.3)

where the −j subscript denotes an estimate using all |R| points except the j-th

reference point. The bandwidth h∗CVLK that maximizes CVLK(h) is an asymptotically

optimal bandwidth in likelihood cross validation sense. Least-squares cross-validation

minimizes the integrated squared error∫
(p̂h(x)− p(x))2 dx, yielding the score:

CVLS(h) =
1

|R|
∑
rj∈R

(
p̂∗−j(rj)− 2p̂−j(rj)

)
(3.3.4)

where p̂∗−j(·) is evaluated using the convolution kernel k(·) ∗ k(·). For the Gaussian

kernel with bandwidth of h, the convolution kernel k(·) ∗ k(·) is the Gaussian kernel

with bandwidth of 2h. Both cross validation scores require |R| density estimate based

on |R| − 1 points, yielding a brute-force computational cost scaling quadratically
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Figure 27: (a) Grid structure used in fast Gauss transform and multidimensional fast
Fourier transform. (b) Single-level Clustering structure used in improved fast Gauss
transform.

(that is O(|R|2)) (see Algorithm 3.3.1). To make matters worse, nonparametric meth-

ods require a large number of reference points for convergence to the true underlying

distribution and this has prevented many practitioners from applying nonparametric

methods for function estimation.

3.3.1 Previous Approaches

There are three main approaches proposed for overcoming the computational barrier

in evaluating the Gaussian kernel sums:

1. to expand the kernel sum as a power series [84, 201, 154] using a grid or a

flat-clustering.

2. to express the kernel sum as a convolution sum by using the grid of field charges

created from the dataset [192].

3. to utilize an adaptive hierarchical structure to group data points based on prox-

imity [82, 77, 80].

Now we briefly describe the strengths and the weaknesses of these methods.

The Fast Gauss Transform (FGT). FGT [84] belongs to a family of methods
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called the Fast Multipole Methods (FMM). These family of methods come with rigor-

ous error bound on the kernel sums. Unlike other FMM algorithms, FGT uses a grid

structure (see Figure 27(a)) whose maximum side length is restricted to be at most

the bandwidth h used in cross-validation due to the error bound criterion. FGT has

not been widely used in higher dimensional statistical contexts. First, the number

of the terms in the power series expansion for the kernel sums grows exponentially

with dimensionality D; this causes computational bottleneck in evaluating the series

expansion or translating a series expansion from one center to another. Second, the

grid structure is extremely inefficient in higher dimensions since the storage cost is

exponential in D and many of the boxes will be empty.

The Improved Fast Gauss Transform (IFGT). IFGT is similar to FMM but

utilizes a flat clustering to group data points (see Figure 27(b)), which is more efficient

than a grid structure used in FGT. The number of clusters k is chosen in advance.

A partition of the data points into C1, · · · ,Ck is formed so that each reference point

rj ∈ R is grouped according to its proximity to the set of representative points

c1, · · · , ck. That is, rj ∈ Cm if and only if ||rj − cm|| ≤ ||rj − cl|| for 1 ≤ l ≤ k.

Furthermore, IFGT proposes using a different series expansion that does not re-

quire translation of expansion centers as done in FGT. The original algorithm [201]

required tweaking of multiple parameters which did not offer for a user to control

the accuracy of the approximation. The latest version [154] is now fully automatic

in choosing the approximation parameter for the absolute error bound, but is still

inefficient except on large bandwidth parameters. See Section 3.2.

Fast Fourier Transform (FFT). FFT is often quoted as the solution to the compu-

tational problem in evaluating the Gaussian kernel sums. Gaussian kernel summation

using FFT is described in [171] and [192]. [171] discusses the implementation of

KDE only in a univariate case, while [192] extends [171] to handle more than one
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A(0,0)

B(0,150) C(150,150)

D(150,0)

d(50,50)

(a) Nearest Neighbor Binning Rule
(A = 1, B = C = D = 0)

A(0,0)

B(0,150) C(150,150)

D(150,0)

(50,50)d

(b) Linear Binning Rule (A =
4
9 , B = 2

9 , C = 1
9 , D = 2

9 )

Figure 28: Two possible binning rules for KDE using multidimensional fast Fourier
transform. Consider a data point falling in a two-dimensional rectangle. In 28(a), the
entire weight is assigned to the nearest grid point. In 28(b), the weight is distributed
to all neighboring grid points by linear interpolation.

dimension. It uses a grid structure shown in Figure 27(a) by specifying the number

of grid points along each dimension.

The algorithm first computes the M1 × · · · × MD matrix by binning the data

assigning the raw data to neighboring grid points using one of the binning rules. This

involves computing the minimum and maximum coordinate values (gi,Mi
, gi,1), and

the grid width δi =
gi,Mi−gi,1
Mi−1

for each i-th dimension. This essentially divides each i-

th dimension into (Mi−1) intervals of equal length. In particular, [192] discusses two

different types of binning rules - linear binning, which is recommended by Silverman,

and nearest-neighbor binning. [192] states that nearest-neighbor binning rule per-

forms poorly, so we will test the implementation using the linear binning rule, as rec-

ommended by both authors. In addition, we compute the L1×· · ·×LD kernel weight

matrix, where Li = min
(⌊

τh
δi

⌋
,Mi − 1

)
, with τ ≈ 4 and Kl =

d∏
k=1

exp
(−0.5lkδk

h2

)
,

−Lk ≤ lk ≤ Lk, for l = [l1, ..., lD]T ∈ ZD.

To reduce the wrap-around effects of fast Fourier transform near the dataset

boundary, we appropriately zero-pad the grid count and the kernel weight matri-

ces to two matrices of the dimensionality P1 × · · ·PD, where Pi = 2log2dMi+Lie. The
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The grid count matrix: CZ =


c1,1 · · · c1,M2

...
. . .

... 0
cM1,1 · · · cM1,M2

0 0



The kernel weight matrix: KZ =



K00 · · · K0L2 K0L2 · · · K01
...

. . .
... 0

...
. . .

...
KL10 · · · KL1L2 KL1L2 · · · KL11

0 0 0
KL10 · · · KL1L2 KL1L2 · · · KL11

...
. . .

... 0
...

. . .
...

K10 · · · K1L2 K1L2 · · · K11


where Kl1,l2 = e

−0.5((l1δ1)
2+(l2δ2)

2)

h2 .

Figure 29: The grid count and the kernel weight matrix formed for a two-dimensional
dataset. They are formed by appropriately zero-padding for taking the boundary-
effects of fast Fourier transform based algorithms into account.

key ingredient in this method is the use of Convolution Theorem for Fourier trans-

forms. The structure of the computed grid count matrix and the kernel weight matrix

is crafted to take advantage of the fast Fourier transform. For every grid point gj,

s̃k(gj) =
L1∑

l1=−L1

· · ·
LD∑

lD=−LD
cj−lKk,l can be computed using the Convolution Theorem

for Fourier Transform. After taking the convolution of the grid count matrix and

the kernel weight matrix, the M1 × · · · × MD sub-matrix in the upper left corner

of the resultant matrix contains the kernel density estimate of the grid points. The

density estimate of each query point is then linearly interpolated using the density

estimates of neighboring grid points inside the cell it falls into. However, performing

a calculation on equally-spaced grid points introduces artifacts at the boundaries of

the data. The linear interpolation of the data points by assigning to neighboring grid

points introduce further errors. Increasing the number of grid points to use along

each dimension can provide more accuracy but also require more space to store the

grid. Moreover, it is impossible to directly quantify incurred error on each estimate

in terms of the number of grid points.
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Dual-tree KDE. In terms of discrete algorithmic structure, the dual-tree framework

of [78] generalizes all of the well-known kernel summation algorithms. These include

the Barnes-Hut algorithm [10], the Fast Multipole Method [83], Appel’s algorithm

[7], and the WSPD [28]: the dual-tree method is a node-node algorithm (considers

query regions rather than points), is fully recursive, can use distribution-sensitive

data structures such as kd-trees, and is bichromatic (can specialize for differing query

set Q and reference set R). It was applied to the problem of kernel density estimation

in [82] using a simple variant of a centroid approximation used in [7].

This algorithm is currently the fastest Gaussian kernel summation algorithm for

general dimensions. Unfortunately, when performing cross-validation to determine

the (initially unknown) optimal bandwidth, both sub-optimally small and large band-

widths must be evaluated. Section 3.2 demonstrates that the dual-tree method tends

to be efficient at the optimal bandwidth and at bandwidths below the optimal band-

width and at very large bandwidths. However, its performance degrades for interme-

diately large bandwidths.

3.3.2 Conclusion

In this chapter we presented an improvement to the dual-tree algorithm [82, 77, 80],

the first practical kernel summation algorithm for general dimension. Our exten-

sion is based on the series-expansion for the Gaussian kernel used by fast Gauss

transform [84]. First, we derive two additional analytical machinery for extending

the original algorithm to utilize a adaptive hierarchical data structure called kd-

trees [15], demonstrating the first truly hierarchical fast Gauss transform, which we

call the Dual-tree Fast Gauss Transform (DFGT). Second, we show how to integrate

the series-expansion approximation within the dual-tree approach to compute kernel

summations with a user-controllable relative error bound. We evaluate our algorithm

on real-world datasets in the context of optimal bandwidth selection in kernel density
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estimation. Our results demonstrate that our new algorithm is the only one that

guarantees a relative error bound and offers fast performance across a wide range of

bandwidths evaluated in cross validation procedures. Our results demonstrate that

the O(pD) expansion helps reduce the computational time on datasets of dimension-

ality up to 5. We note that our method has been included in the thesis [197] for

comparison.
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CHAPTER IV

SERIES EXPANSION-BASED METHOD II

Here we again consider the acceleration of the Gaussian kernel sums (Equation (3.0.2))

with arbitrary non-negative weights wj
1. For concreteness, we again define the com-

putational task tackled in this chapter.

Problem: Suppose we are given the set of query points Q and the set of reference

points R. Given a pairwise Gaussian kernel function k(x,y) = exp
(
−||x−y||2

2h2

)
, the

relative error level ε > 0, and the desired kernel sum Φ(q; R) =
∑

rj∈R

wjk(q, rj) for

each q ∈ Q,

Task: Compute an approximation Φ̃(q; R) for each q ∈ Q such that∣∣∣Φ̃(q; R)− Φ(q; R)
∣∣∣ ≤ εΦ(q; R) as fast as possible.

Expansions in [84] and Chapter 3 require the computation of O(pD) sub-terms. While

effective in the context of computational physics problems, this is problematic in

statistical/data mining applications, in which D may be larger than 2 or 3. Chap-

ter 3 developed the translation operators and error bounds necessary to perform the

original FGT-style O(pD) approximation within the context of the dual-tree frame-

work, demonstrating the first hierarchical fast Gauss transform. However, the new

algorithm showed efficiency over any of the aforementioned methods over the entire

range of bandwidths necessary in cross-validation, only in very low dimensions (3 or

less). The Improved Fast Gauss Transform (IFGT) [201] introduced a rearranged

series approximation requiring O(Dp) sub-terms, which seemed promising for higher

1This is a slightly generalized setting than the one in Chapter 3.
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Figure 30: Take D = 2 and p = 6 for example. Left: O(Dp) (15 terms); Right:
O(pD) (25 terms) Think of “sampling” the Gaussian kernel at fixed basis functions.
From bottom to top, left to right, we have multi-indices: O(Dp): (0, 0), (1, 0), (2,
0), (3, 0), (4, 0), (0, 1), (1, 1), (2, 1), (3, 1), (0, 2), (1, 2), (2, 2), (0, 3), (1, 3), (0, 4);
O(pD): (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (0, 2),
(1, 2), (2, 2), (3, 2), (4, 2), (0, 3), (1, 3), (2, 3), (3, 3), (4, 3)

dimensions with an associated error bound, which was unfortunately incorrect. The

IFGT was based on a flat set of clusters and did not provide any translation operators.

In this chapter, we demonstrate for the first time the O(Dp) (rather than O(pD))

expansion of the Gaussian kernel (different from that of the IFGT) within a hi-

erarchical (dual-tree) algorithm. We also introduce a more efficient mechanism for

automatically achieving the user’s error tolerance which works with both discrete and

continuous approximation schemes. We evaluate these new techniques empirically on

real datasets, revealing the strengths and weaknesses of the main current

approaches for the first time.

4.1 O(Dp) and O(pD) Expansions

For concreteness, we first discuss the difference between O(pD) and O(Dp) expansion.

The O(pD) expansion [84] utilizes the multiplicative nature of the Gaussian kernel

(i.e. the multivariate isotropic Gaussian kernel is the product of univariate Gaussian

kernels) and the univariate Taylor’s theorem (Theorem 3.1.1). On the other hand,

the O(Dp) expansion uses the multivariate Taylor’s theorem.
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(a)

{0, 0} 10.0
{1, 0} 3.59
{0, 1} 2.83
{2, 0} 13.7
{1, 1} 23.1
{0, 2} 11.3
{3, 0} 1.95
{2, 1} 4.23
{1, 2} 3.67
{0, 3} 1.16
{4, 0} 3.50
{3, 1} 11.2
{2, 2} 15.5
{1, 3} 10.6
{0, 4} 2.92

{0, 0} 10.0
{0, 1} 2.83
{0, 2} 11.3
{0, 3} 1.16
{0, 4} 2.92
{1, 0} 3.59
{1, 1} 23.1
{1, 2} 3.67
{1, 3} 10.6
{1, 4} 0.867
{2, 0} 13.7
{2, 1} 4.23
{2, 2} 15.5
{2, 3} 1.76
{2, 4} 4.08
{3, 0} 1.95
{3, 1} 11.2
{3, 2} 1.85
{3, 3} 5.16
{3, 4} 0.479
{4, 0} 3.50
{4, 1} 1.10
{4, 2} 3.93
{4, 3} 0.465
{4, 4} 1.03

(b)

Figure 31: In (b), the far-field moments using the reference points shown in (a) are
computed in the O(Dp) expansion (left) and in the O(pD) expansion (right) up to
the same order p = 5; note that both representations store moments in a linear array
representation, and the moments in the O(Dp) are a subset of those in the O(pD)
expansion of the same order.
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Theorem 4.1.1. Multidimensional Taylor’s Theorem: Let O ⊂ RD be an open

set. Let x∗ ∈ O and f be a function which is n times differentiable in O. For any

x ∈ O, there exists θ ∈ R with 0 < θ < 1 such that f(x) =
∑
|α|<p

1
α!
Dαf(x∗)(x−x∗)

α+∑
|α|=p

1
α!
Dαf(x∗ + θ(x − x∗))(x − x∗)

α. The last term Rn =
∑
|α|=p

1
α!
Dαf(x∗ + θ(x −

x∗))(x − x∗)
α is called the Lagrange remainder and |Rn| ≤

∑
|α|=p

1
α!

sup
0<θ<1

∣∣Dαf(x∗ +

θ(x− x∗))
∣∣ D∏
d=1

∣∣x[d]− x∗[d]
∣∣α[d]

Let us compare the far-field expansion and the local expansion under both the

O(pD) and O(Dp) expansion schemes.

Far-field Expansion: Let Rsub be a reference node. A far-field expansion for O(pD)

is given by:

Φ(qi; R
sub) =

∑
rjn∈Rsub

wjn exp

(
−||qi − rjn ||2

2h2

)

=
∑

rjn∈Rsub

wjn

D∏
d=1

 ∞∑
α[d]=0

1

α[d]!

(
rjn [d]− cRsub [d]√

2h2

)α[d]

hα[d]

(
qi[d]− cRsub [d]√

2h2

)
=

∑
rjn∈Rsub

wjn

D∏
d=1

( ∑
α[d]<p

1

α[d]!

(
rjn [d]− cRsub [d]√

2h2

)α[d]

hα[d]

(
qi[d]− cRsub [d)]√

2h2

)
+

∑
α[d]≥p

1

α[d]!

(
rjn [d]− cRsub [d]√

2h2

)α[d]

hα[d]

(
qi[d]− cRsub [d]√

2h2

))
Truncating after p terms along each dimension yields:

Φ(qi; R
sub) ≈Φ̃

(
qi; {(Rsub ,F(cRsub , {α ∈

(
Z+ ∪ {0}

)D
: α < p}))}

)
=

∑
rjn∈Rsub

wjn

D∏
d=1

 ∑
α[d]<p

1

α[d]!

(
rjn [d]− cRsub [d]√

2h2

)α[d]

hα[d]

(
qi[d]− cRsub [d]√

2h2

)
=

∑
rjn∈Rsub

wjn
∑
α<p

1

α!

(
rjn − cRsub√

2h2

)α
hα

(
qi − cRsub√

2h2

)

=
∑
α<p

∑
rjn∈R

wjn
α!

(
rjn − cRsub√

2h2

)αhα(qi − cRsub√
2h2

)

=
∑
α<p

Mα(Rsub , cRsub)hα

(
qi − cRsub√

2h2

)
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If the truncated part of the series per each dimension,

∑
α[d]≥p

1

α[d]!

(
rjn [d]− cRsub [d]√

2h2

)α[d]

hα[d]

(
qi[d]− cRsub [d]√

2h2

)

is small, the truncation incurs small error. Ideally, we would like to choose the smallest

p such that the truncation after the chosen order p incurs tolerable error; this will be

discussed in Section 4.3. The transition from the fourth line to the fifth line follows

from the definition of a multi-index α to be less than a scalar p.

The O(Dp) expansion truncates the terms in a different way:

Φ(qi; R
sub) ≈Φ̃(qi; {(Rsub ,F(cRsub , {α ∈

(
Z+ ∪ {0}

)D
: |α| < p}))}))})

=
∑
|α|<p

Mα(Rsub , cRsub)hα

(
qi − cRsub√

2h2

)

Local Expansion: A local expansion is a Taylor expansion of the kernel sums about

a representative point cQsub in a query region Qsub :

Φ(qi; R
sub) =

∑
rjn∈Rsub

wjn exp

(
−||qi − rjn||2

2h2

)

=
∑

rjn∈Rsub

wjn

D∏
d=1

(
∞∑

nd=0

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]√

2h2

)(
qi[d]− cQsub [d]√

2h2

)β)

=
∑

rjn∈Rsub

wjn

D∏
d=1

(∑
nd<p

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]√

2h2

)(
qi[d]− cQsub [d]√

2h2

)β
+

∑
nd≥p

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]√

2h2

)(
qi[d]− cQsub [d]√

2h2

)β)
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Again, truncating after p terms along each dimension yields:

Φ̃(qi; {(Rsub ,N(cQsub , {α ∈ (Z+ ∪ {0})D : α < p}))})

=
∑

rjn∈Rsub

wjn

D∏
d=1

(∑
nd<p

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]√

2h2

)(
qi[d]− cQsub [d]√

2h2

)β)

=
∑

rjn∈Rsub

wjn
∑
β<p

(−1)β

β!
hβ

(
cQsub − rjn√

2h2

)(
qi − cQsub√

2h2

)β

=
∑
β<p

 ∑
rjn∈Rsub

(−1)βwjn
β!

hβ

(
cQsub − rjn√

2h2

)(qi − cQsub√
2h2

)β

=
∑
β<p

Nβ({(Rsub , (cQsub , {β ∈ (Z+ ∪ {0})D : β < p}))})
(

qi − cQsub√
2h2

)β
The truncation incurs small error, given that the absolute value of the truncated part:

∑
nd≥p

(−1)nd

nd!
hnd

(
cQsub [d]− rjn [d]√

2h2

)(
qi[d]− cQsub [d]√

2h2

)β
is bounded by a small quantity. The error bound criterion will again be discussed in

Section 4.3. The O(Dp) expansion of the local expansion is given by:

Φ(qi; R
sub) ≈Φ̃(qi; {(Rsub ,N(cQsub , {β ∈

(
Z+ ∪ {0}

)D
: |β| < p}))}))})

=
∑
|β|<p

Nβ({(Rsub , (cQsub , {β ∈
(
Z+ ∪ {0}

)D
: |β| < p}))})

(
qi − cQsub√

2h2

)β

4.2 Translation Operators

Since the properties of the Gaussian kernel do not require that approximation be

made in the local fashion, the original FGT used a flat grid with only far-to-local

operator whose associated incorrect error was corrected by [11]. [114] derived two

additional translation operators necessary for a hierarchical FGT and the associated

error bounds for O(pD) expansion of Hermite/Taylor coefficients. For a review of all

three translation operators, see Chapter 3.
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4.3 Error Bounds for O(Dp) Expansions

Because Hermite/Taylor expansions are truncated after a finite number of terms, we

incur an error in approximation. In order to bound the total approximation error, we

need one error bound for each translation operator. In [114], the Hermite and the

Taylor expansion were treated as products of D univariate Hermite/Taylor expan-

sions. The trailing sum in each univariate expansion was bounded using the property

of infinite geometric series, which in turn limited the size of the query/reference node

for pruning to be valid. Here, we use the same translation operators, but instead

view each expansion as a vector function and use the O(Dp) expansion advocated

in [201]. The new error bounds based on this new expansion scheme depend on the

multidimensional Taylor’s Theorem, and effectively eliminate the node size restriction

imposed by the O(pD) expansion [84, 114].

The first lemma gives an upper bound on the absolute error on estimating a

reference node contribution by evaluating a truncated Hermite expansion. The second

lemma gives an upper bound on the absolute error incurred from approximating the

contribution of a reference node by evaluating the Taylor series formed via direct local

accumulation of each reference point.

Lemma 4.3.1. Suppose we are given a far-field expansion of Rsub about cRsub :

Φ̃(q; {(Rsub ,F(cRsub , p))}) =
∑
|α|≤p

Mα(Rsub , cRsub)hα

(
q−c

Rsub√
2h2

)
where

Mα(Rsub , cRsub) =
∑

rjn∈Rsub

wjn
α!

(
rjn−c

Rsub√
2h2

)α
. Then: |Φ̃(q; {(Rsub ,F(cRsub , p))})) −

Φ(q; Rsub)| ≤ EF(p) = W (Rsub)
exp

(
−dl(Qsub ,Rsub)

2

4h2

)
(D+p−1
D−1 )rp

Rsub√(
b p
D
c!
)D−p′(

d p
D
e!
)p′ where

rRsub = max
rj∈Rsub

||rj−c
Rsub ||∞
h

and p′ = p mod D and W (Rsub) =
∑

rj∈Rsub

wj.
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Proof. By Theorem 4.1.1 and the triangle inequality,∣∣∣∣∣∣Φ(q; Rsub)−
∑
|α|<p

Mα(Rsub , cRsub)hα

(
q− cRsub√

2h2

)∣∣∣∣∣∣
≤
∑

rj∈Rsub

wr

∣∣∣∣∣∣k(||q− rj||)−
∑
|α|<p

1

α!
hα

(
q− cRsub√

2h2

)(
rj − cRsub√

2h2

)α∣∣∣∣∣∣
≤W (Rsub)

∑
|α|=p

1

α!
max

q∈Qsub ,rj∈Rsub

∣∣∣∣hα(q− rj√
2h2

)∣∣∣∣ D∏
d=1

∣∣∣∣rj[d]− cRsub [d]√
2h2

∣∣∣∣α[d]

≤W (Rsub) exp

(
−dl(Qsub ,Rsub)

2

4h2

) ∑
|α|=p

1

α!

(√
2
)α√

α!
D∏
d=1

∣∣∣∣rj[d]− cRsub [d]√
2h2

∣∣∣∣α[d]

≤W (Rsub) exp

(
−dl(Qsub ,Rsub)

2

4h2

) ∑
|α|=p

1√
α!

D∏
d=1

∣∣∣∣rj[d]− cRsub [d]

h

∣∣∣∣α[d]

≤W (Rsub) exp

(
−dl(Qsub ,Rsub)

2

4h2

) ∑
|α|=p

rα
Rsub√
α!
≤ W (Rsub)

exp
(
−dl(Qsub ,Rsub)

2

4h2

) (
D+p−1
D−1

)
rp
Rsub√(

b p
D
c!
)D−p′(d p

D
e!
)p′

Lemma 4.3.2. Suppose we are given the local expansion about cQsub of the given query

node Qsub accounting for the kernel sum contribution of Rsub: Φ̃(qim ; {(Rsub ,N(cQsub , p))}) =∑
|β|≤p

Nβ({(Rsub , (cQsub , p))})
(

qim−c
Qsub√

2h2

)β
where qim ∈ Qsub and Nβ({(Rsub , (cQsub , p))}) =∑

rjn∈Rsub

(−1)|β|

β!
hβ

(
c
Qsub−rjn√

2h2

)
Then:

∣∣∣Φ̃(qim ; {(Rsub ,N(cQsub , p))})− Φ(qim ; Rsub)
∣∣∣ ≤

EN(p) = W (Rsub)
exp

(
−dl(Qsub ,Rsub)

2

4h2

)
(D+p−1
D−1 )rp

Qsub√(
b p
D
c!
)D−p′(

d p
D
e!
)p′ where rQsub = max

qi∈Qsub

||qi−c
Qsub ||∞
h

and

p′ = p mod D.

Proof. The derivation is similar to one in Lemma 4.

The final lemma gives an upper bound on the absolute error incurred by approx-

imating the reference node contribution by the Taylor expansion converted from the

truncated Hermite expansion.
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Lemma 4.3.3. A truncated far-field expansion centered about cRsub of Rsub,

Φ̃(q; {(Rsub ,F(cRsub , p))}) =
∑
α≤p

Mα(Rsub , cRsub)hα

(
q− cRsub√

2h2

)

has the following local expansion about cQsub of Qsub for qim ∈ Qsub:

Φ̃(qim ; {(Rsub ,F(cRsub , p))}) =
∑
β≥0

Nβ({(Mα(Rsub , cRsub), (cQsub , p))})
(

qim−c
Qsub√

2h2

)β
where:

Nβ({(Mα(Rsub , cRsub), (cQsub , p))}) = (−1)|β|

β!

∑
|α|≤p

Mα(Rsub , cRsub)hα+β

(
c
Qsub−c

Rsub√
2h2

)
.

Let Φ̃(qim ; {(Mα(Rsub , cRsub), Ñ(cQsub , p))}) =
∑
|β|≤p

Ñβ({(Mα(Rsub , cRsub), (cQsub , p))})(
qim−c

Qsub√
2h2

)β
, a truncation of the local expansion of Φ̃(qim ; {(Rsub ,F(cRsub , p))}) after

O(Dp) terms. Then:

∣∣∣Φ̃(qim ; {(Mα(Rsub , cRsub ), Ñ(cQsub , p))})− Φ(q;Rsub)
∣∣∣ ≤ EÑ

(p)

=W (Rsub)

exp

(
−dl(Qsub ,Rsub)

2

4h2

)(
D+p−1
D−1

)
√(
b pDc!

)D−p′(d pDe!)p′
(
rp
Qsub +

(√
2rRsub

)p(D + p− 1

D

)(√
2rQsub

)I(√2r
Qsub ))

where rQsub = max
qi∈Qsub

||qi−qi||∞
h

,

rRsub = max
rj∈Rsub

||rj−c
Rsub ||∞
h

, p′ = p mod D and I(x) =


0, 0 ≤ x ≤ 1

p− 1, otherwise

.

Proof. Let E1 =
∑
|β|<p

(−1)|β|

β!

∑
|α|≥p

1
α!

(rj−c
Rsub√

2h2

)α
hα+β

(qi−c
Rsub√

2h2

) (
qi−qi√

2h2

)β
and

E2 =
∑
|β|≥p

(−1)|β|

β!
hβ
(qi−rj√

2h2

)(
qi−qi√

2h2

)β
Then,

∣∣∣∣∣∣Φ(qi)−
∑
|β|<p

(−1)|β|

β!

∑
|α|<p

Mα(Rsub , cRsub)hα+β

(
qi − cRsub√

2h2

)∣∣∣∣∣∣ ≤ W (Rsub)(|E1|+|E2|)
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Clearly, |E2| ≤
exp

(
−dl(Qsub ,Rsub)

2

4h2

)
(D+p−1
D−1 )rp

Qsub√(
b p
D
c!
)D−p′(

d p
D
e!
)p′ . In addition,

|E1| ≤
∑
|β|<p

1

β!

∑
|α|=p

1

α!

D∏
d=1

∣∣∣∣rj[d]− cRsub [d]√
2h2

∣∣∣∣α[d] ∣∣∣∣qi[d]− cQsub [d]
√

2h2

∣∣∣∣β[d]

max
qi∈Qsub

rj∈Rsub

∣∣∣∣hα+β

(
qi − rj√

2h2

)∣∣∣∣
≤ exp

(
−dl(Qsub ,Rsub)

2

4h2

) ∑
|β|<p

1√
β!

∑
|α|=p

√
(α+ β)!

α!β!

√
2
α+β

√
α!

D∏
d=1

∣∣∣∣rj[d]− cRsub [d]√
2h2

∣∣∣∣α[d] ∣∣∣∣qi[d]− cQsub [d]
√

2h2

∣∣∣∣β[d]

≤ exp

(
−dl(Qsub ,Rsub)

2

4h2

) ∑
|β|<p

1√
β!

∑
|α|=p

√
2
α+β
√

2
α+β

√
α!

D∏
d=1

∣∣∣∣rj[d]− cRsub [d]√
2h2

∣∣∣∣α[d] ∣∣qi[d]− cQsub [d]
√

2h2

∣∣β[d]

≤ exp

(
−dl(Qsub ,Rsub)

2

4h2

) ∑
|β|<p

1√
β!

∑
|α|=p

1√
α!

D∏
d=1

∣∣∣∣∣
√

2(rj[d]− cRsub [d])

h

∣∣∣∣∣
α[d] ∣∣∣∣∣

√
(2)(qi[d]− cQsub [d])

h

∣∣∣∣∣
β[d]

≤
exp

(
−dl(Qsub ,Rsub)

2

4h2

)(
D+p−1
D−1

)(√
2rRsub

)p
√(
b pDc!

)D−p′(d pDe!)p′
∑
|β|<p

1√
β!

D∏
d=1

∣∣√(2)(qi[d]− cQsub [d])

h

∣∣β[d]

≤
exp

(
−dl(Qsub ,Rsub)

2

4h2

)(
D+p−1
D−1

)
√(
b pDc!

)D−p′(d pDe!)p′
(√

2rRsub

)p(D + p− 1

D

)(√
2rQsub

)I(√2r
Qsub )

4.4 New Error Guarantee Rule

We now specify the function CanSummarize(Qsub ,Rsub), which has only local in-

formation (contained in the query node Qsub and the reference node Rsub) avail-

able to it. In the dual-tree finite-difference algorithm (DFD) [77], the function

Summarize(Qsub ,Rsub) approximates the contribution of Rsub to each query point qi

in Qsub , Φ(qi; R
sub), by Φ̃(qi; R

sub) = W (Rsub)K̄ = W (Rsub)k(du(Qsub ,Rsub))+k(dl(Qsub ,Rsub))
2
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where W (Rsub) =
∑

rj∈Rsub

wj and dl(Qsub ,Rsub) and du(Qsub ,Rsub) are lower and up-

per bounds on the distance between qi ∈ Qsub and rj ∈ Rsub , respectively. These

distances are easily obtained using the bounding boxes of the nodes. By using these

bounds DFD algorithm maintains a running lower bound Φl(Qsub×R) on Φ(qi; R
sub)

which holds for all qi ∈ Qsub . In Section 4.3, we laid out more approximation meth-

ods in addition to finite-difference approximation: evaluating a truncated Hermite

expansion centered at cRsub , forming a truncated Taylor expansion centered at qi us-

ing each reference point, and forming an approximated truncated Taylor expansion

centered at qi by converting the truncated Hermite expansion centered at cRsub . This

change was described in Section 3.1.8.

Our series-expansion based algorithm uses four different approximation methods,

i.e. A ∈ {D, Ñ(c, p),F(c, p),N(c, p)}. For each Rsub , an approximation method is

chosen. D denotes the exhaustive computation of
∑

rjn∈R

wjnk(||qi − rjn||). Ñ(c, p)

denotes the translation of the order p far-field moments of Rsub to the local moments

in the query node Qsub that owns qi about a representative centroid c inside Qsub .

F(c, p) denotes the evaluation up to the p-th order far-field expansion formed by

the moments of Rsub expanded about a representative point c inside Rsub . N(c, p)

denotes the p-th order direct accumulation of the local moments due to Rsub about a

representative centroid c inside Qsub that owns qi.

Now note that: ED = 0, and EF, EN, and EÑ are given as Lemma 4.3.1, 4.3.2, 4.3.3

respectively. The approximation rule above essentially gives each reference node

Rsub a maximum relative error proportional to the sum of the weights of reference

points it contains. In considering the i-th reference node contribution, when A = D

(exhaustive direct method), the maximum allowable relative error of W (Ri)ε
W (R)

is not used

up; Otherwise, if Φl(Qsub ×R) > 0, pruning requires only a relative error of W ′(Ri)ε
W (R)

where W ′(Ri) =
W (R)EAi

εΦl(Qsub×R)
. Our new approximation rule notes that the portion of

the weights not used to cover the incurred pruning error can be stored into a field
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variable of Qsub (initialized to zero before the computation and denoted ∆T (Qsub)

hereon) in each query node Qsub to use them in future pruning opportunities. The

first case yields W (Ri) as the leftover, while the second case (pruned case) yields

W (Ri)−W ′(Ri).

Given Ai ∈ A with the maximum absolute error of EAi
, we now modify the

approximation condition to:
EAi

Φl(Qsub×R)
≤ ε(W (Rsub)+WT )

W
. Solving for WT yields:

WT ≥ W (Rsub)
( WEAi

εΦl(Qsub×R)
− 1
)
. Whenever a pruning is attempted, the modified

algorithm will evaluate the right handside of the inequality. If the evaluated value is

negative, it represents the leftover “token” after pruning is performed and ∆T (Qsub)

of the current query node will be incremented by W (Rsub)
(
1− W (R)EAi

εΦl(Qsub×R)

)
. If positive,

it represents the required extra “token” from the ∆T (Qsub) slot of the current query

node, in order to prune the given query and reference node pair. If ∆T (Qsub) ≥ WT ,

pruning succeeds and ∆T (Qsub) is decremented by W (Rsub)
( W (R)EAi

εΦl(Qsub×R)
− 1
)
.

4.5 New Dual-tree Algorithm

During the preprocessing phase, the Hermite moments of order PLIMIT is pre-

computed for the reference tree. For the experimental results, we have fixed PLIMIT =

8 for D = 2, PLIMIT = 6 for D = 3, PLIMIT = 4 for D = 5, PLIMIT = 2 for

D = 6. We presume that PLIMIT = 1 for D > 6.

During the recursive function call, an optimized version of finite-difference prun-

ing is first attempted. In case of failure, we attempt FMM-type pruning in which

we choose the cheapest operation given a query node Qsub and a reference node

Rsub from the followings: direct Hermite evaluation, direct local accumulation, H2L

translation, and exhaustive computations. Roughly, direct Hermite evaluations at

each qi ∈ Qsub is O(|Qsub|DpDH+1), direct local accumulation O(|Rsub|DpDL+1), H2L

translation O(D2pH2L+1), an exhaustive method O(D|Qsub||Rsub|). In our algorithm,

if an exhaustive method is selected, we let the recursion continue, hoping pruning can
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occur in the finer level of recursion. It is possible to hand-tune the exact cutoffs for

determining the optimal choice, but these rough approximations seem to work well.

In the post-processing step, we perform a breadth-first traversal of the query tree.

The algorithm is similar to the one described in Chapter 3.

4.6 Experiments and Conclusions

We empirically evaluated the runtime performance of six algorithms on six real-world

datasets (astronomy (2-D), physical simulation (3-D), pharmaceutical (5-D), biology

(7-D), forestry (10-D), image textures (16-D)) scaled to fit in [0, 1]D hypercube, for

kernel density estimation at every query point with a range of bandwidths, from 3

orders of magnitude smaller than optimal to three orders larger than optimal, accord-

ing to the standard least-squares cross-validation scores [170]. In our case, the set of

reference points is the same as the set of query points. All datasets have 50K points

so that the exact exhaustive method can be tractably computed. We set the tolerance

ε = 0.01. We compare: FGT (Fast Gauss Transform [84]), IFGT (Improved Fast

Gauss Transform [201]), DFD (dual-tree with finite-difference [77]), DFDO (dual-

tree with finite-difference and improved error control (Section 3.2)), DFTO (dual-tree

with O(pD) expansion [114] and improved error control), and DITO (dual-tree with

O(Dp) expansion and improved error control). All times (which include preprocessing

but exclude parameter selection time) are in CPU seconds on a dual Intel Xeon 3 GHz

with 2 Gb of main memory/1 Mb of CPU cache2. Codes are in C/C++, compiled

under −O6 −funroll− loops flags on Linux kernel 2.6.9-11. The measurements in

columns two to eight are obtained by running the algorithms at the bandwidth kh∗

where 10−3 ≤ k ≤ 103 is the constant in the corresponding column. The dual-tree

algorithms all achieve the error tolerance automatically. We also note that the FGT

uses a different error tolerance definition: |Φ̃(qi)− Φ(qi)| ≤ Wτ . We first set τ = ε,

2Experimental setups are the same as [112].
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Table 3: Speedup results on the 2-D, the 3-D, and the 5-D datasets.
sj2 − 50000 − 2 , D = 2, N = 50000, h∗ = 0.00139506

Alg\h∗ 10−3 10−2 10−1 1 101 102 103 Σ
Naive 452 452 452 452 452 452 452 3164
FGT X X X 4.36 1.66 0.26 0.13 X
IFGT ∞ ∞ ∞ ∞ ∞ ∞ 7.05 ∞
DFD 1.98 3.12 2.2 8.12 85.6 230 1.99 333
DFDO 2.02 3.18 2.19 7.08 77.7 170 0.82 263
DFTO 2.05 3.22 2.27 7.44 5.37 2.49 0.72 23.6
DITO 2.61 3.88 3.00 9.21 7.64 1.51 0.84 28.7

mockgalaxy − D − 1M − rnd , D = 3, N = 50000, h∗ = 0.000768201
Alg\h∗ 10−3 10−2 10−1 1 101 102 103 Σ
Naive 461 461 461 461 461 461 461 3227
FGT X X X X ∞ ∞ ∞ X
IFGT ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
DFD 1.37 1.40 1.32 0.96 1.29 57.6 552 616
DFDO 1.40 1.43 1.35 0.97 1.25 44.5 355 406
DFTO 1.45 1.48 1.41 1.03 1.37 20 28.3 55
DITO 2.29 2.32 2.28 1.92 2.28 40.6 8.65 60.3

bio5 − rnd , D = 5, N = 50000, h∗ = 0.000567161
Alg\h∗ 10−3 10−2 10−1 1 101 102 103 Σ
Naive 491 491 491 491 491 491 491 3437
FGT X X X X X X X X
IFGT ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
DFD 5.59 6.49 13.5 17.1 128 577 169 917
DFDO 5.75 6.67 13.7 16.2 113 544 81.6 781
DFTO 5.80 6.70 13.8 16.5 123 422 282 870
DITO 6.92 7.86 15.6 19.3 133 365 6.10 554
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halving it until the error tolerance ε was met. For the IFGT, we created an auto-

matic scheme to tweak its multiple parameters based on recommendations given in

the paper and software documentation: For D = 2, use p = 8; for D = 3, use p = 6;

set ρx = 2.5; start with K =
√
N and double K until the error tolerance is met.

When this failed to meet the tolerance, we resorted to additional trial and error by

hand. We are primarily concerned with the sum of the times over all the bandwidths,

shown in the last column of the table. Entries in the tables of ’X’ denote cases where

the algorithm exhausted RAM and caused a segmentation fault. Entries of∞ denote

cases where no setting of the algorithm’s parameters was able to satisfy the error

tolerance.

Our results demonstrate that theO(Dp) expansion helps reduce the computational

time on datasets of dimensionality up to 5. For example, on the 2-D dataset, the new

algorithm DITO performed about 12 times as fast as the original DFD algorithm,

which is in itself an improvement over the naive algorithm. The datasets above five

dimensions, however, present difficulty for the series expansion idea to be effective,

and the new algorithm is slower than DFD algorithm. Yet the algorithm with the

optimized pruning rule (DFDO) consistenyl yields about 10 % to 15 % improvement

over DFD algorithm in higher dimensions.
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Table 4: Speedup results on the 7-D, the 10-D, and the 16-D datasets.
pall7 − rnd , D = 7, N = 50000, h∗ = 0.00131865

Alg\h∗ 10−3 10−2 10−1 1 101 102 103 Σ
Naive 511 511 511 511 511 511 511 3577
FGT X X X X X X X X
IFGT ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
DFD 14.9 15.1 16.6 37.7 50.8 372 625 1132
DFDO 15.5 15.6 17.3 38.2 49 321 587 1044
DFTO 15.6 15.6 17.4 38.4 50.2 337 621 1095
DITO 16.5 16.7 18.4 40.5 54.7 362 703 1212

covtype − rnd , D = 10, N = 50000, h∗ = 0.0154758
Alg\h∗ 10−3 10−2 10−1 1 101 102 103 Σ
Naive 515 515 515 515 515 515 515 3605
FGT X X X X X X X X
IFGT ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
DFD 26.5 29.7 88.2 104 557 659 11.4 1476
DFDO 27.2 30.5 90.2 98.2 515 623 5.73 1390
DFTO 27.4 30.7 90.6 101 477 660 6.10 1393
DITO 28.4 31.6 92.8 106 490 668 6.19 1423

CoocTexture − rnd , D = 16, N = 50000, h∗ = 0.0263958
Alg\h∗ 10−3 10−2 10−1 1 101 102 103 Σ
Naive 558 558 558 558 558 558 558 3906
FGT X X X X X X X X
IFGT ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
DFD 19.3 36.6 107 199 611 641 0.56 1614
DFDO 19.9 36.4 107 237 589 375 0.58 1365
DFTO 20.1 37.8 108 189 629 401 0.60 1386
DITO 26.2 38.9 112 196 655 437 0.62 1466
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CHAPTER V

MONTE CARLO MULTIPOLE METHOD

In this chapter, we continue exploring the problem of accelerating the Gaussian kernel

sums (Equation (3.0.2)). In Chapter 3 and Chapter 4, we advocated the usage of the

most successful class of acceleration methods that employ “higher-order divide and

conquer” or generalized N-body algorithms (GNA) [78]. This approach can use any

spatial partioning tree such as kd-trees or ball-trees for both the query set Q and

reference data R and performs a simulataneous recursive descent on both trees.

GNA with relative error bounds (Definition 2.4.2) utilized bounding boxes and

additional cached-sufficient statistics such as higher-order moments needed for series-

expansion. The original framework [78, 82, 77, 80] utilized bounding-box based error

bounds which tend to be very loose, which resulted in slow empirical performance

around suboptimally small and large bandwidths. The most recent extesnsions de-

scribed in Chapter 3 and Chapter 4 extended GNA-based Gaussian summations with

series-expansion which provided tighter bounds; it showed enormous performance im-

provements, but only up to low dimensional settings (up to D = 5) since the number

of required terms in series expansion increases exponentially with respect to D.

[95] introduces an iterative sampling based GNA for accelerating the computa-

tion of nested sums (a related easier problem). Its speedup is achieved by replacing

pessimistic error bounds provided by bounding boxes with normal-based confidence

interval from Monte Carlo sampling. [95] demonstrates the speedup many orders of

magnitude faster than the previous state of the art in the context of computing aggre-

gates over the queries (such as the LSCV score for selecting the optimal bandwidth).

However, the authors did not discuss the sampling-based approach for computations
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that require per-query estimates, such as those required for kernel density estimation.

None of the previous approaches for kernel summations addresses the issue of

reducing the computational cost of each distance computation which incurs O(D)

cost. However, the intrinsic dimensionality d of most high-dimensional datasets is

much smaller than the explicit dimension D (that is, d � D). [121] proposed tree

structures using a global dimension reduction method, such as random projection, as a

preprocessing step for efficient (1+ε) approximate nearest neighbor search. Similarly,

we develop a new data structure for kernel summations; our new data structure is

constructed in a top-down fashion to perform the initial spatial partitioning in the

original input space RD and performs a local dimension reduction to a localized subset

of the data in a bottom-up fashion.

In this chapter, we propose a new fast Gaussian summation algorithm that enables

speedup in higher dimensions. Our approach utilizes: 1) probabilistic relative error

bounds (Definition 2.4.3) on kernel sums provided by Monte Carlo estimates; 2) a new

tree structure called subspace tree for reducing the computational cost of each distance

computation. The former can be seen as relaxing the strict requirement of guaran-

teeing hard relative bound on very small quantities, as done in [82, 77, 80, 114, 112].

The latter was mentioned as a possible way of ameliorating the effects of the curse of

dimensionality in [137], a pioneering paper in this area. We now formally define the

computational task tackled in this chapter.

Problem: Suppose we are given the set of query points Q and the set of reference

points R. Given a pairwise Gaussian kernel function k(x,y) = exp
(
−||x−y||2

2h2

)
, the

relative error level ε > 0, the probability guarantee level 0 < α < 1, and the desired

kernel sum Φ(q; R) =
∑

rj∈R

k(q, rj) for each q ∈ Q,

Task: Compute an approximation Φ̃(q; R) for each q ∈ Q such that∣∣∣Φ̃(q; R)− Φ(q; R)
∣∣∣ ≤ εΦ(q; R) with an asymptotic probability guarantee level of α
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Algorithm 5.1.1 DFGT(Qsub ,Rsub)

if CanSummarize(Qsub ,Rsub , ε) then
Summarize(Qsub ,Rsub)

else if CanSummarizeMC(Qsub ,Rsub , ε, α) then
SummarizeMC(Qsub ,Rsub , ε, α)

else
if Qsub is a leaf node then

if Rsub is a leaf node then
DFGTBase(Qsub ,Rsub)

else
DFGT

(
Qsub ,Rsub,L

)
, DFGT

(
Qsub ,Rsub,R

)
else

if Rsub is a leaf node then
DFGT(Qsub,L,Rsub), DFGT(Qsub,R,Rsub)

else
DFGT

(
Qsub,L,Rsub,L

)
, DFGT

(
Qsub,L,Rsub,R

)
DFGT

(
Qsub,R,Rsub,L

)
, DFGT

(
Qsub,R,Rsub,R

)
as fast as possible.

5.1 Gaussian Summation by Monte Carlo Sampling

Here we describe the extension needed for probabilistic computation of kernel sum-

mation satisfying Definition 2.4.3. The main routine for the probabilistic kernel sum-

mation is shown in Algorithm 5.1.1. The function DFGT takes the query node Qsub

and the reference node Rsub (each initially called with the roots of the query tree and

the reference tree). The idea of Monte Carlo sampling used in the new algorithm is

similar to the one in [95], except the sampling is done per query and we use approxi-

mations that provide hard error bounds as well (i.e. finite difference, exhaustive base

case: DFGTBase). This means that the approximation has less variance than a pure

Monte Carlo approach used in [95]. Algorithm 5.1.1 first attempts approximations

with hard error bounds, which are computationally cheaper than sampling-based ap-

proximations. For example, finite-difference scheme [82, 77, 80] can be used for the

CanSummarize and Summarize functions in any general dimension.
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The CanSummarizeMC function takes two parameters that specify the accu-

racy: the relative error and its probability guarantee and decides whether to use

Monte Carlo sampling for the given pair of nodes. If the reference node Rsub contains

too few points, it may be more efficient to process it using exact methods that use

error bounds based on bounding primitives on the node pair or exhaustive pair-wise

evaluations, which is determined by the condition: ζ ·minitial ≤ |Rsub| where ζ > 1

controls the minimum number of reference points needed for Monte Carlo sampling

to proceed. If the reference node does contain enough points, then for each query

point q ∈ Qsub , the Sample routine samples minitial terms over the terms in the

summation Φ(q; Rsub) =
∑

rjn∈Rsub

k(||q − rjn||) where Φ(q; Rsub) denotes the exact

contribution of Rsub to q’s kernel sum. Basically, we are interested in estimating

Φ(q; Rsub) by Φ̃(q; Rsub) = |Rsub|µS, where µS is the sample mean of S. From the

Central Limit Theorem (Theorem 2.3.2), given enough m samples, µS ; N (µ, σ2
S/m)

where Φ(q; Rsub) = |Rsub|µ (i.e. µ is the average of the kernel value between q and

any reference point r ∈ Rsub); this implies that |µS − µ| ≤ zα/2σS√
m

with probability

1− α. The pruning rule we have to enforce for each query point for the contribution

of Rsub is:

zα/2
σS√
m
≤ εΦ(q; R)

|R|

where σS the sample standard deviation of S. Since Φ(q; R) is one of the unknown

quanities we want to compute, we instead enforce the following:

zα/2
σS√
m
≤
ε
(

Φl(q; R) + |Rsub|
(
µS −

zα/2σS√
m

))
|R|

(5.1.1)

where Φl(q; R) is the currently running lower bound on the sum computed using

exact methods and |Rsub|
(
µS −

zα/2σS√
m

)
is the probabilistic component contributed

by Rsub . Denoting Φl,new(q; R) = Φl(q; R) + |Rsub|
(
µS −

zα/2σS√
|S|

)
, the minimum

number of samples for q needed to achieve the target error the right side of the
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inequality in Equation 5.1.1 with at least probability of 1− α is:

m ≥ z2
α/2σ

2
S

(|R|+ ε|Rsub|)2

ε2(Φl(q; R) + |Rsub|µS)2

If the given query node and reference node pair cannot be pruned using either non-

probabilistic/probabilistic approximations, then we recurse on a smaller subsets of two

sets. We now state the probablistic error guarantee of our algorithm as a theorem.

Theorem 5.1.1. After calling DFGT with Qsub = Q, Rsub = R, Algorithm 5.1.1

approximates each Φ(q; R) with Φ̃(q; R) such that Definition 2.4.3 holds.

Proof. For a query/reference (Qsub ,Rsub) pair and 0 < α < 1, DFGTBase and

Summarize compute estimates for q ∈ Qsub such that
∣∣∣Φ̃(q; R)− Φ(q; R)

∣∣∣ < εΦ(q;R)|Rsub |
|R|

with probability at least 1 − α. By Equation 5.1.1, SummarizeMC computes es-

timates for q ∈ Qsub such that
∣∣∣Φ̃(q; R)− Φ(q; R)

∣∣∣ < εΦ(q;R)|Rsub |
|R| with probability

1− α.

We now induct on |Qsub ∪Rsub|. Line 11 of Algorithm 5.1.1 divides over the refer-

ence whose subcalls compute estimates that satisfy
∣∣∣Φ̃(q; Rsub,L)− Φ(q; Rsub,L)

∣∣∣ ≤
εΦ(q;R)|Rsub,L|

|R| and
∣∣∣Φ̃(q; Rsub,R)− Φ(q; Rsub,R)

∣∣∣ ≤ εΦ(q;R)|Rsub,R|
|R| each with at least

1 − α probability by induction hypothesis. For q ∈ Qsub , Φ̃(q; R) = Φ̃(q; Rsub,L) +

Φ̃(q; Rsub,R) which means |Φ̃(q; R)−Φ(q; R)| ≤ εΦ(q;R)|Rsub |
|R| with probability at least

1 − α. Essentially, the frontier nodes used for approximation (see Figure 15) act as

strata and error bound argument can be proven using the techniques in Theorem 4

of [95]. Line 14 divides over the query and each subcall computes estimates that hold

with at least probability 1 − α for q ∈ Qsub,L ∪Qsub,R. Line 16 and 17 divides both

over the query and the reference, and the correctness can be proven similarly.

5.2 Subspace Tree

A subspace tree is a space-partitioning tree with a set of orthogonal bases associated

with each node N: Ω(N) = (µ,U,Λ, d) where µ is the mean, U is a D × d matrix
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Algorithm 5.2.1 Monte Carlo sampling based approximation routines.

Sample(q,Rsub , ε, α,S,m)
for k = 1 to m do

r← random point in Rsub

S← S ∪ {k(||q− r||)}
µS ←Mean(S)
σ2

S ← Variance(S)
Φl,new(q; R)← Φl(q; R)+

|Rsub|
(
µS −

zα/2σS√
|S|

)
mthresh ← z2

α/2σ
2
S

(|R|+ε|Rsub |)2
ε2(Φl(q;R)+|Rsub |µS)2

m← mthresh − |S|

CanSummarizeMC(Qsub ,Rsub , ε, α)
return ζ ·minitial ≤ |Rsub|

SummarizeMC(Qsub ,Rsub , ε, α)
for qi ∈ Qsub do

S← ∅, m← minitial

repeat
Sample(qi,R

sub , ε, α,S,m)
until m ≤ 0
Φ(qi; R) ← Φ(qi; R) + |Rsub| ·
Mean(S)

whose columns consist of d eigenvectors, and Λ the corresponding eigenvalues. The

orthogonal basis set is constructed using a linear dimension reduction method such

as PCA. It is constructed in the top-down manner using the PartitionSet function

dividing the given set of points into two (where the PartitionSet function divides

along the dimension with the highest variance in case of a kd-tree for example),

with the subspace in each node formed in the bottom-up manner. Algorithm 5.3.1

shows a PCA tree (a subspace tree using PCA as a dimension reduction) for a 3-D

dataset. The subspace of each leaf node is computed using PcaBase which can use

the exact PCA [76] or a stochastic one [60]. For an internal node, the subspaces

of the child nodes, Ω(NL) = (µL,UL,ΛL, dL) and Ω(NR) = (µR,UR,ΛR, dR), are

approximately merged using the MergeSubspaces function which involves solving

an (dL + dR + 1)× (dL + dR + 1) eigenvalue problem [90], which runs in O((dL + dR +

1)3) � O(D3) given that the dataset is sparse. In addition, each data point x in

each node N is mapped to its new lower-dimensional coordinate using the orthogonal

basis set of N: xproj = UT (x − µ). The L2 norm reconstruction error is given by:

||xrecon − x||22 = ||(Uxproj + µ)− x||22.

Monte Carlo Sampling using a Subspace Tree. Consider CanSummarizeMC

function in Algorithm 5.2.1. The “outer-loop” over this algorithm is over the query

set Q, and it would make sense to project each query point q ∈ Q to the subspace
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owned by the reference node Rsub . Let U and µ be the orthogonal basis system

for Rsub consisting of d basis. For each q ∈ Qsub , consider the squared distance

||(q−µ)−rproj ||2 (where (q−µ) is q’s coordinates expressed in terms of the coordinate

system of Rsub) as shown in Figure 32. For the Gaussian kernel, each pairwise kernel

value is approximated as:

exp

(
−||q− r||2

2h2

)
≈ exp

(
−||q− qrecon ||2

2h2

)
exp

(
−||qproj − rproj ||2

2h2

)
(5.2.1)

where qrecon = Uqproj + µ and qproj = UT (q − µ). For a fixed query point q,

exp
(
−||q−qrecon ||2

2h2

)
can be precomputed (which takes d dot products between two D-

dimensional vectors) and re-used for every distance computation between q and any

reference point r ∈ Rsub whose cost is now O(d) � O(D). Therefore, we can take

more samples efficiently. For a total of sufficiently large m samples, the computational

cost is O(d(D +m))� O(D ·m) for each query point.

Increased variance comes at the cost of inexact distance computations, however.

Each distance computation incurs at most squared L2 norm of ||rrecon − r||22 error.

That is, |||q− rrecon ||22 − ||q− r||22| ≤ ||rrecon−r||22. Neverhteless, the sample variance

for each query point plus the inexactness due to dimension reduction ζS can be shown

to be bounded for the Gaussian kernel as: (where each s = exp
(
−||q−rrecon ||2

2h2

)
):

1

m− 1

(∑
s∈S

s2 −m · µ2
S

)
+ ζS

≤ 1

m− 1

((∑
s∈S

s2

)
min

{
1, max

r∈Rsub
exp

(
||rrecon − r||22

h2

)}
−m

(
µS min

r∈Rsub
exp

(
−||rrecon − r||22

2h2

))2
)

Exhaustive Computations Using a Subspace Tree. Now suppose we have built

subspace trees for the query and the reference sets. We can project either each query

point onto the reference subspace, or each reference point onto the query subspace,

depending on which subspace has a smaller dimension and the number of points in

each node. The subspaces formed in the leaf nodes usually are highly numerically

accurate since it contains very few points.
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rproj qproj

q
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Figure 32: Left: A PCA-tree for a 3-D dataset. Note that the tree is constructed in
the original Euclidean space that contains the point set, but instead here shown to
illustrate how subspaces are merged. Right: The squared distance between a given
query point and a reference point projected onto a subspace can be decomposed into
the orthogonal component and the subspace component.

5.3 Experimental Results

We empirically evaluated the runtime performance of our algorithm on seven real-

world datasets, scaled to fit in [0, 1]D hypercube, for approximating the Gaussian sum

at every query point with a range of bandwidths. This experiment is motivated by

many kernel methods that require computing the Gaussian sum at different band-

width values (according to the standard least-sqares cross-validation scores [170]).

Nevertheless, we emphasize that the acceleration results are applicable to other ker-

nel methods that require efficient Gaussian summation.

In this chapter, the reference set equals the query set. All datasets have 50K

points so that the exact exhaustive method can be tractably computed. All times

are in seconds and include the time needed to build the trees. Codes are in C/C++

and run on a dual Intel Xeon 3GHz with 8 Gb of main memory. The measurements

in second to eigth columns are obtained by running the algorithms at the bandwidth

kh∗ where 10−3 ≤ k ≤ 103 is the constant in the corresponding column header. The

last columns denote the total time needed to run on all seven bandwidth values.
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Algorithm 5.3.1 PCA tree building routine.

BuildPcaTree(Psub)
if CanPartition(Psub) then
{Psub,L,Psub,R} ← PartitionSet(Psub)
N← empty node
NL ← BuildPcaTree(PL)
NR ← BuildPcaTree(PR)
MergeSubspaces(Subspace of NL, Subspace of NR)

else
N← BuildPcaTreeBase(Psub)
PcaBase(Psub)

Project(Psub , Subspace of N)
return N

Each table has results for five algorithms: the naive algorithm and four algorithms.

The algorithms with α = 0 denote the previous state-of-the-art (finite-difference with

error redistribution) [112], while those with α > 0 denote our probabilistic version.

Each entry has the running time and the percentage of the query points that did not

satisfy the relative error ε.

Analysis. Readers should focus on the last columns containing the total time needed

for evaluating Gaussian sum at all points for seven different bandwidth values. This

is indicated by boldfaced numbers for our probabilistic algorithm. As expected, On

low-dimensional datasets (below 6 dimensions), the algorithm using series-expansion

based bounds gives two to three times speedup compared to our approach that uses

Monte Carlo sampling. Multipole moments are an effective form of compression in low

dimensions with analytical error bounds that can be evaluated; our Monte Carlo-based

method has an asymptotic error bound which must be “learned” through sampling.

As we go from 7 dimensions and beyond, series-expansion cannot be done efficiently

because of its slow convergence. Our probabilistic algorithm (α = 0.9) using Monte

Carlo consistently performs better than the algorithm using exact bounds (α = 0)

by at least a factor of two. Compared to naive, it achieves the maximum speedup of

about nine times on an 16-dimensional dataset; on an 89-dimensional dataset, it is
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at least three times as fast as the naive. Note that all the datasets contain only 50K

points, and the speedup will be more dramatic as we increase the number of points.

5.4 Conclusion and Future Work

We presented an extension to fast multipole methods to use approximation methods

with both hard and probabilistic bounds. Our new technique is based on a proba-

bilistic approximation based on the central limit theorem and a new data structure

that records a dominant subspace in each node in a hierarchical data structure which

reduces the distance computation cost. Our experimental results show speedup over

the previous state-of-the-art on high-dimensional datasets. Our future work will in-

clude possible improvements inspired by a recent work done in the FMM community

using a matrix-factorization formulation [129] and a more extensive experimental

comparison.
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Algorithm \ scale 0.001 0.01 0.1 1 10 100 1000 Σ

mockgalaxy-D-1M-rnd (cosmology: positions), D = 3, N = 50000, h∗ = 0.000768201

Naive 182 182 182 182 182 182 182 1274

MCMM 3 3 5 10 26 48 2 97
(ε = 0.1, α = 0.1) 1 % 1 % 1 % 1 % 1 % 1 % 5 %

DFGT 2 2 2 2 6 19 3 36
(ε = 0.1, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

MCMM 3 3 4 11 27 58 21 127
(ε = 0.01, α = 0.1) 0 % 0 % 1 % 1 % 1 % 1 % 7 %

DFGT 2 2 2 2 7 30 5 50
(ε = 0.01, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

bio5-rnd (biology: drug activity), D = 5, N = 50000, h∗ = 0.000567161

Naive 214 214 214 214 214 214 214 1498

MCMM 4 4 6 144 149 65 1 373
(ε = 0.1, α = 0.1) 0 % 0 % 0 % 0 % 1 % 0 % 1 %

DFGT 4 4 5 24 96 65 2 200
(ε = 0.1, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

MCMM 4 4 6 148 165 126 1 454
(ε = 0.01, α = 0.1) 0 % 0 % 0 % 0 % 1 % 0 % 1 %

DFGT 4 4 5 25 139 126 4 307
(ε = 0.01, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

pall7 − rnd , D = 7, N = 50000, h∗ = 0.00131865

Naive 327 327 327 327 327 327 327 2289

MCMM 3 3 3 3 63 224 < 1 300
(ε = 0.1, α = 0.1) 0 % 0 % 0 % 1 % 1 % 12 % 0 %

DFGT 10 10 11 14 84 263 223 615
(ε = 0.1, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

MCMM 3 3 3 3 70 265 5 352
(ε = 0.01, α = 0.1) 0 % 0 % 0 % 1 % 2 % 1 % 8 %

DFGT 10 10 11 14 85 299 374 803
(ε = 0.01, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

covtype − rnd , D = 10, N = 50000, h∗ = 0.0154758

Naive 380 380 380 380 380 380 380 2660

MCMM 11 11 13 39 318 < 1 < 1 381
(ε = 0.1, α = 0.1) 0 % 0 % 0 % 1 % 0 % 0 % 0 %

DFGT 26 27 38 177 390 244 < 1 903
(ε = 0.1, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

MCMM 11 11 13 77 362 2 < 1 477
(ε = 0.01, α = 0.1) 0 % 0 % 0 % 1 % 1 % 10 % 0 %

DFGT 26 27 38 180 427 416 < 1 1115
(ε = 0.01, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %
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Algorithm \ scale 0.001 0.01 0.1 1 10 100 1000 Σ

CoocTexture − rnd , D = 16, N = 50000, h∗ = 0.0263958

Naive 472 472 472 472 472 472 472 3304

MCMM 10 11 22 189 109 < 1 < 1 343
(ε = 0.1, α = 0.1) 0 % 0 % 0 % 1 % 8 % 0 % 0 %

DFGT 22 26 82 240 452 66 < 1 889
(ε = 0.1, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

MCMM 10 11 22 204 285 < 1 < 1 534
(ε = 0.01, α = 0.1) 0 % 0 % 1 % 1 % 10 % 4 % 0 %

DFGT 22 26 83 254 543 230 < 1 1159
(ε = 0.01, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

LayoutHistogram − rnd , D = 32, N = 50000, h∗ = 0.0609892

Naive 757 757 757 757 757 757 757 5299

MCMM 32 32 54 168 583 8 8 885
(ε = 0.1, α = 0.1) 0 % 0 % 1 % 1 % 1 % 0 % 0 %

DFGT 153 159 221 492 849 212 < 1 2087
(ε = 0.1, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

MCMM 32 45 60 183 858 8 8 1246
(ε = 0.01, α = 0.1) 0 % 0 % 1 % 6 % 1 % 0 % 0 %

DFGT 153 159 222 503 888 659 < 1 2585
(ε = 0.01, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

CorelCombined − rnd , D = 89, N = 50000, h∗ = 0.0512583

Naive 1716 1716 1716 1716 1716 1716 1716 12012

MCMM 384 418 575 428 1679 17 17 3518
(ε = 0.1, α = 0.1) 0 % 0 % 0 % 1 % 10 % 0 % 0 %

DFGT 659 677 864 1397 1772 836 17 6205
(ε = 0.1, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %

MCMM 401 419 575 437 1905 17 17 3771
(ε = 0.01, α = 0.1) 0 % 0 % 0 % 1 % 2 % 0 % 0 %

DFGT 659 677 865 1425 1794 1649 17 7086
(ε = 0.01, α = 0) 0 % 0 % 0 % 0 % 0 % 0 % 0 %
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CHAPTER VI

APPLICATIONS IN NONPARAMETRIC CLUSTERING

Mean shift is a powerful but computationally expensive method for nonparametric

clustering and optimization. It iteratively moves each data point to its local mean

until convergence. We introduce a fast algorithm for computing mean shift based on

the dual-tree. Unlike previous speed-up attempts, our algorithm maintains a relative

error bound at each iteration, resulting in significantly more stable and accurate

convergence. We demonstrate the benefit of our method in clustering experiments

with real and synthetic data.

This chapter presents a fast algorithm for computing mean shift (MS). MS is a

nonparametric, iterative method for unsupervised clustering and global/local opti-

mization. It has a wide range of applications in clustering and data analysis. For

example, the computer vision community has utilized MS for (1) its clustering prop-

erty in image segmentation, feature analysis [48] and texture classification [73]; and

for (2) its quadratic optimization property in visual tracking [46, 47]. MS is attractive

for clustering and optimization problems due to its ability to adapt to the data dis-

tribution. However, it suffers from high computational cost - O(|Q||R|) operations in

each iteration (see the pseudo code in algorithm 6.1.1) Therefore, applications of MS

have either used fairly small datasets [48, 47], or avoided updating all of the points in

the query set (e.g. a local optimization process is started from a single query). Alter-

natively, some fast approximations of MS have been proposed [73, 201]. While these

methods have been shown experimentally to have high efficiency, they suffer from

three major limitations: 1) Improved Fast Gauss Transform-based MS [201] (IFGT-

MS) can use only the Gaussian kernel; 2) Both IFGT-MS and Locality Sensitive
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Hashing-based MS [73] (LSH-MS) have many tuning parameters; 3) Both methods

lack explicit error bounds for the vector approximation in each iteration of MS.

We believe speedup techniques should ensure both the accuracy and the stability

of the approximation. “Accuracy” means that the approximation has a guaranteed

error bound. “Stability” means that the approximation should return almost identical

results over different runs. Nondeterminism typically stems from randomized initial-

ization, and approximation methods which lack reliable error control mechanisms can

be sensitive to these initial values, resulting in a significant variation in their outputs

for a fixed input. In this chapter, we introduce an acceleration technique that achieves

both accuracy and stability – Dual-tree [78] based mean shift (DT-MS). DT-MS can

use any kernel, has a user-specified relative error tolerance on each computation of

m(qi) (Equation (6.1.1)) and requires no other parameter tuning. Our experiments

on datasets with dimensionality ranging from 2 to 16 and size ranging from 6, 000 to

68, 040 demonstrate the superiority of DT-MS over IFGT-MS and LSH-MS in terms

of speed, accuracy, and stability. This chapter makes three contributions:

1. Introduction of DT-MS, a novel approximation method for MS which is fast,

accurate, and stable.

2. An extension of the dual-tree method (introduced in [78] for positive scalar

targets) to the signed mean vector case. To achieve this extension, we have

developed (i) A new global error bound (Theorem 1) for pruning nodes, (ii)

A novel finite difference approximation for the signed mean vector, and (iii) A

new algorithm for updating bounds on the L1 norm.

3. The first empirical comparison of fast MS algorithms on standardized datasets.

We highlight for the first time the issue of stability in MS approximation.

6.1 Mean Shift
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Algorithm 6.1.1 Mean-Shift(Q,R, w(·), k(·), ε)
Input: Q, R, ε (the pre-defined distance threshold)
Output: The converged query set

dist = 100 ∗ ones(|Q|, 1) {initialize distance vector}
while max(dist)≥ ε do

for each qi ∈ Q do

m(qi) =

∑
rj∈R

k(rj−qi)w(rj)rj∑
rj∈R

k(rj−qi)w(rj)

dist(qi) = ‖m(qi)− qi‖2 {distance can be of any norm}
qi ←m(qi)

return Q

Mean shift [38, 71] moves each query to its local mean until convergence (see

algorithm 6.1.1). Let R denote the reference data set, and Q denote the query data

set. R ⊂ RD,Q ⊂ RD, rj ∈ R,qi ∈ Q. The mean of query qi is defined as:

m(qi) =
h(qi)

f(qi)
=

∑
rj∈R k(rj − qi)w(rj)rj∑
rj∈R k(rj − qi)w(rj)

(6.1.1)

where w : RD → R is a weight function which can vary with rj and time. In this

chapter we set w(rj) = 1 for all rj. The kernel function k : RD → R has profile

k : [0,∞]→ R, such that k(x) = k(‖x
h
‖2), where h is the bandwidth and k is mono-

tonically non-increasing, nonnegative and piecewise continuous [38]. Now we formally

define the computational task tackled in this chapter1.

Problem: Suppose we are given the set of query points Q and the set of reference

points R in each mean shift iteration. Given a pairwise kernel function k, the relative

error level ε > 0, and the desired kernel sums h(qi) =
∑

rj∈R k(rj − qi)w(rj)rj and

f(qi) =
∑

rj∈R k(rj − qi)w(rj),

Task: Compute an approximation m̃(q; R) = h̃(qi)

f̃(qi)
for each q ∈ Q such that

1We realize that this is speeding up only the inner-loop computations in the mean shift clustering
procedure. The error accumulation incurred across multiple iterations do affect the convergence but
we experimentally validate that the resulting clusters are more stable than previous approaches.
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||m̃(q; R)−m(q; R)| |1 ≤ ε||m(q; R)||1 as fast as possible for speeding up each iter-

ation of the mean shift clustering procedure (i.e. bounding the L1 norm error).

Cheng [38] proves that MS is a step-varying gradient ascent optimization. [65]

shows MS is equivalent to Newton’s method with piecewise constant kernels, and it

is a quadratic bound maximization for all kernels.

6.2 Previous Acceleration Methods

The denominator of Equation 6.1.1 is a kernel density estimate (KDE) while the

numerator is a weighted vector sum. The key challenge in accelerating MS is to ap-

proximate this ratio. Since MS is closely related to KDE, most speedup methods focus

on fast approximation of f(qi) or fast range search at qi (defined by the bandwidth).

The two most important related works are the Improved Fast Gauss Transform-based

MS (IFGT-MS) [201] and Locality Sensitive Hashing-based MS (LSH-MS) [73].

IFGT-MS is applicable to only the Gaussian kernel. IFGT-MS first clusters the ref-

erence points using the k-center algorithm and loops over each query point/reference

cluster pair, evaluating the precomputed (truncated) Taylor coefficients for clusters

that are within the distance threshold from the query point. IFGT-MS requires a

significant amount of manual parameter tuning for good performance.2

LSH [74] has been popular recently for k-nearest neighbor (k-NN) search in high

dimensions. It performs L random partitions of the data set. For each partition, a

boolean vector of size K is generated for each datum, thus the data set are indexed

into 2K cells. Each query qi belongs to L cells simultaneously. The union of the

L cells is returned as the neighborhood of qi. The choice of (K,L) is critical. The

training process [73] selects the (K,L) that minimizes the query time on a subset

2The important parameters are: p-polynomial order, Kc-number of partitions, e-ratio of the
cutoff radius to the bandwidth, which determines the absolute error bound. We follow the authors’
suggestion: Kc =

√
|R|; we gradually increase e and p as we tune them to achieve comparable result

to DT-MS(Epan.), though the authors recommend e = 3 and p ≤ 3.
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of Q and satisfies a user-specified k-NN distance approximation error bound, which

unfortunately is not directly related to the approximation of m(qi).

Unlike these two previous speedup techniques, our dual-tree based mean shift

method imposes a relative error bound on the entire mean vector m(qi). Achieving

this stronger accuracy guarantee requires more computation than other approaches,

but our experimental results demonstrate that DT-MS achieves much more stable

convergence results while still providing a significant speedup. In particular, DT-MS

is faster than IFGT-MS, LSH-MS and naive MS in speed and convergence when using

the Epanechnikov kernel.

6.3 Dual-tree Mean Shift

The dual-tree-based algorithm described in Chapter 2 and Chapter 3 can be applied

to the mean shift computation because it computes m(qi) = h(qi)/f(qi) (which

involves summations of weighted pairwise kernel values) in every iteration of MS. In

every iteration of MS, a query tree is rebuilt because qi is updated as m(qi), while the

reference tree remains fixed. In contrast to KDE, mean shift involves the numerator

h(qi) which is a weighted vector sum and f(qi) which is in the form of KDE. Here

we ensure a relative error bound in L1 norm (other norms are applicable too) on the

mean vector m(qi) directly: |h̃(qi)/f̃(qi)− h(qi)/f(qi)|1/|h(qi)/f(qi)|1 ≤ τ . h̃(qi)

and f̃(qi) denote approximations to the numerator and the denominator, respectively.

This error bound brings up three questions: 1) How to distribute the global error

bound τ into the local node-node pruning? 2) How to maintain the bounds for the

vector? 3) How to apply these bounds in approximation? We answer these below.

Maintaining the Bounds. The distance bounds between Qsub and Rsub , and hence

the bounds on f(qi) and h(qi), are used in the linear approximation and error bounds

distribution. Unlike KDE, the vector term takes on both positive and negative values,

so we need to keep track of them separately. For each query point qi and for each query
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Algorithm 6.3.1 MS-Dualtree(Qsub ,Rsub)

if Qsub is not a leaf node then
for each dimension d do
hl,d(qi) = max (hl,d(qi),min (hmin

Qsub,L,d
, hmin

Qsub,R,d
))

hu,d(qi) = min (hu,d(qi),max (hmax
Qsub,L,d

, hmax
Qsub,R,d

))

f l(Qsub) = max (f l(Qsub),min (fmin
Qsub,L , f

min
Qsub,R))

fu(qi) = min (fu(qi),max (fmax
Qsub,L , f

max
Qsub,R))

∆K = k(dl(Qsub ,Rsub))− k(du(Qsub ,Rsub))
∆Kmin = k(dl(Qsub ,Rsub))− k(dl(Q,R))
∆Kmax = k(du(Qsub ,Rsub))− k(du(Q,R))
dlf = |Rsub|∆Kmax, duf = |Rsub|∆Kmin.

if ∆K ≤ min { τf
l(Qsub)L(Qsub)
NU(Qsub)

, τL(Qsub)∑
d S

A,d } then

for each dimension d do
dlhd = S−,d(Rsub)∆Kmin + S+,d(Rsub)∆Kmax

duhd = S+,d(Rsub)∆Kmin + S−,d(Rsub)∆Kmax

hl,d(qi)+ = dlhd ,h
u,d(qi)+ = duhd

f l(Qsub)+ = dlf ,f
u(Qsub)+ = duf

else if Qsub and Rsub are leaves then
MS-DualtreeBase(Qsub ,Rsub)

else
MS-Dualtree(Qsub,L,Rsub,L),MS-Dualtree(Qsub,L,Rsub,R)
MS-Dualtree(Qsub,R,Rsub,L),MS-Dualtree(Qsub,R,Rsub,R)

node Qsub , we maintain dimension-wise lower and upper bounds for the numerator:

hl,d(qi) and hu,d(qi) for qi, and hl,d(Qsub) and hu,d(Qsub) for Qsub for 1 ≤ d ≤ D,

denoted hl(qi), h
u(qi), h

l(Qsub), and hu(Qsub) collectively as a vector. Similarly, the

lower and the upper bounds for the denominator can be maintained: f l(qi), f
u(qi),

f l(Qsub), and fu(Qsub). We define the following sums of directional coordinate values

for all reference points: SA,d =
∑

rj∈R |rj(d)|, S+,d =
∑

rj∈R,rj(d)>0 rj(d), S−,d =∑
rj∈R,rj(d)<0 rj(d), and the sums for reference points belonging to a given reference

node Rsub : S+,d(Rsub) =
∑

rj∈Rsub ,rj(d)>0 rj(d), S−,d(Rsub) =
∑

rj∈Rsub ,rj(d)<0 rj(d),

Sd(Rsub) = S+,d(Rsub) + S−,d(Rsub), SA,d(Rsub) =
∑

rj∈Rsub |rj(d)|, where rj(d) is the

dth coordinate of rj, d = 1, ..., D. After the query and the reference trees are built,

we initialize the lower and the upper bounds for the numerator and the denominator

for all qi’s and all Qsub ’s as follows:
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Algorithm 6.3.2 MS-DualtreeBase(Qsub ,Rsub)

for each qi ∈ Qsub do
for each rj ∈ Rsub do
c = k(‖qi−rj‖), fminq + = c, fmaxq + = c, fminq − = |Rsub|k(du(Q,R)), fmaxq − =
|Rsub|k(dl(Q,R))
for each dimension d do
hl,d(qi)+ = c · rj(d),hu,d(qi)+ = c · rj(d),
hl,d(qi)− = (S−R,dk(dl(Qsub ,Rsub)) + S+

R,dk(du(Qsub ,Rsub))),

hu,d(qi)− = (S−R,dk(du(Qsub ,Rsub)) + S+
R,dk(dl(Qsub ,Rsub)))

f l(Qsub) = minq∈Q f
min
q , fmaxQ = maxq∈Q f

max
q

for each dimension d do
hl,d(qi) = min

q∈Q
hl,d(qi), h

u,d(qi) = max
q∈Q

hu,d(qi)

hl,d(qi) = hl,d(Qsub) = S−,dk(dl(Q,R)) + S+,dk(du(Q,R))

hu,d(qi) = hu,d(Qsub) = S+,dk(dl(Q,R)) + S−,dk(du(Q,R))

f l(qi) = f l(Qsub) = |R|k(du(Q,R))

fu(qi) = fu(Qsub) = |R|k(dl(Q,R))

where dl(Q,R) and du(Q,R) denote the min/max distances between the root node

of the query tree and the root node of the reference tree. The bounds above will be

maintained and updated at all times, such that for any query node Qsub : hl,d(qi) ≤

hd(qi) ≤ hu,d(qi) for 1 ≤ d ≤ D and f l(Qsub) ≤ f(qi) ≤ fu(Qsub) for any qi ∈ Qsub .

Specifying the Summarize Function. Given a query node Qsub and a reference

node Rsub , we can approximate Rsub ’s contribution to the numerator as h(qi; R
sub)

and to the denominator as f(qi; R
sub) for all qi ∈ Qsub by the linear finite difference

approximation with the bounds for d = 1, · · · , D:

h̃d(qi; R
sub) = (hl,d(qi; R

sub) + hu,d(qi; R
sub))/2

=((S−,d(Rsub)k(dl(Qsub ,Rsub)) + S+,d(Rsub)k(du(Qsub ,Rsub)))+

(S+,d(Rsub)k(dl(Qsub ,Rsub)) + S−,d(Rsub)k(du(Qsub ,Rsub))))/2 = SR,dK̄h

and to the denominator f(qi; R
sub) by: f(qi; R

sub) = |Rsub|K̄h. During recursion,
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the bounds are tightened as:

hl,d(qi)+ =S−,d(Rsub)(k(dl(Qsub ,Rsub))− k(dl(Q,R)))

+ S+,d(Rsub)(k(du(Qsub ,Rsub))− k(du(Q,R)))

hu,d(qi)+ =S+,d(Rsub)(k(dl(Qsub ,Rsub))− k(dl(Q,R)))

+ S−,d(Rsub)(k(du(Qsub ,Rsub))− k(du(Q,R)))

f l(Qsub)+ =|Rsub|(k(du(Qsub ,Rsub))− k(du(Q,R)))

fu(qi)+ =|Rsub|(k(dl(Qsub ,Rsub))− k(dl(Q,R)))

Specifying the CanSummarize Function. The global relative error bound τ

is satisfied by ensuring a local pruning criterion in the function CanSummarize.

Simple algebraic manipulation reveals that:

|h̃(qi)/f̃(qi)− h(qi)/f(qi)|1/|h(qi)/f(qi)|1 ≤ τ

⇔|f(qi)h̃(qi)− f̃(qi)h(qi)|1 ≤ τ f̃(qi)|h(qi)|1

Theorem 6.3.1 derives the pruning condition based on the triangle inequality, which

shows how to satisfy the right hand side of the above relationship. The condition spec-

ifies the CanSummarize function for DT-MS to guarantee the global error bound.

Multipole expansion is also used for more pruning [112]. We define some notations

first. Given a query node Qsub , the bounds for h(qi) in L1 norm for any qi ∈ Qsub are

defined as: L(Qsub) =
D∑
d=1

I(hl,d(qi), h
u,d(qi)), U(Qsub) =

D∑
d=1

max (|hl,d(qi)|, |hu,d(qi)|)

where

I(a, b) =


a, a ≥ 0

−b, b < 0

0, otherwise

for a, b ∈ R, such that L(Qsub) ≤ |h(qi)|1 ≤ U(Qsub) for

all qi ∈ Qsub .

Theorem 6.3.1. Given a query node Qsub and a reference node Rsub, if Rsub’s con-

tribution to all qi ∈ Qsub is approximated as h̃d(qi; R
sub) = (SR,d(k(du(Qsub ,Rsub)) +

113



k(dl(Qsub ,Rsub))))/2, d = 1, ..., D and f̃R(qi) = |Rsub|K̄h, the following local pruning

criterion must be enforced to guarantee the global relative error bound τ : k(dl(Qsub ,Rsub))−

k(du(Qsub ,Rsub)) ≤ min { τf
l(Qsub)L(Qsub)
|R|U(Qsub)

, τL(Qsub)∑
d S

A,d }

Proof. If the local pruning criterion is met and Rsub is approximated, we have

|h̃d(qi; R
sub)− hd(qi; R

sub)| ≤ (hu,d(qi; R
sub)− hl,d(qi; R

sub))/2

=SA,d(Rsub)(k(dl(Qsub ,Rsub))− k(du(Qsub ,Rsub)))/2

for d = 1, · · · , D and |f̃R(qi)−f(qi)| ≤ |Rsub|(k(dl(Qsub ,Rsub))−k(du(Qsub ,Rsub)))/2.

Given qi ∈ Qsub , suppose h̃(qi) and f̃(qi) were computed using reference nodes

∪{Rsub} = R. By the triangle inequality,

|f(qi)h̃(qi)− f̃(qi)h(qi)|1 ≤ |h̃(qi)|1|f(qi)− f̃(qi)|+ f̃(qi)|(h̃(qi)− h(qi))|1

≤
∑
Rsub

|h̃(qi)|1(f(qi;R
sub)− f̃R(qi))|+ f̃(qi)|h̃R(qi)− h(qi;R

sub)|1

≤|h̃(qi)|1
∑
Rsub

|Rsub |(k(dl(Qsub ,Rsub))− k(du(Qsub ,Rsub)))/2+

f̃(qi)
∑
Rsub

∑
d

SA,d(Rsub)(k(dl(Qsub ,Rsub))− k(du(Qsub ,Rsub)))/2

≤
∑
Rsub

[
|h̃(qi)|1

τ |Rsub |f l(Qsub)L(Qsub)

2NU(Qsub)
+ f̃(qi)

τ
∑

d S
A,d(Rsub)L(Qsub)

2
∑

d S
A,d

]
≤ τ f̃(qi)|h(qi)|1

6.4 Experiments and Discussions

We have two tasks in the experiments. One is to compare the speedup of DT-MS

over the naive MS. The other is to compare the speed, accuracy and stability in

convergence among DT-MS, IFGT-MS and LSH-MS. We used the IFGT-MS and

LSH-MS codes provided by the authors. LSH uses an Epanechnikov-like kernel. So

we tested both the Gaussian kernel (k(qi − rj) = e−‖qi−rj‖2/2h2) and Epanechnikov
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Table 5: Running time (in seconds) of DT-MS and naive-MS with the Gaussian
kernel. Nit is the number of iterations in MS, τ = 0.1, ε = 0.01.

Images Speedup Time(DT/Naive) Nit hg
Fox 44.74 155.22/6944.54 1/1 0.0166

Snake 136.51 39.71/5420.36 1/1 0.0065
Cowboys 1.75 3059.38/5352.24 2/1 0.0172

Vase 19.06 300.66/5729.44 1/1 0.0163
Plane 32.86 187.54/6162.65 1/1 0.0102
Hawk 48.88 127.35/6224.48 1/1 0.0136

kernel (k(qi − rj) = 1− ‖qi − rj‖2/h2 if ‖qi − rj‖ ≤ h, otherwise 0) for DT-MS. 3 Q

is initialized as R for all the datasets.

Speedup of DT-MS over the Naive MS. We chose image segmentation as a

representative clustering task. The goal of image segmentation is to cluster pixels

into several distinct groups. We followed [201]’s approach of segmentation, where

each datum represents the normalized CIE LUV color space for each pixel and the

labels are assigned to the pixels by applying a k-means algorithm to the converged Q

returned by MS. In other words, one image forms one dataset R ⊂ R3 and the size of

R equals the number of pixels in the image. We applied DT-MS and the naive MS to

10 test images from the Berkeley segmentation dataset.4 The image size is 481× 321,

i.e. N = 154, 401. The speedup is an order of magnitude in 7 images and two orders

of magnitude in one image. A summary of running time and speedups for a set of

representative images is given in Table 5. Segmentation results for these images are

shown in Figure 38.

Comparison among DT-MS, IFGT-MS and LSH-MS. The speed, accuracy

and stability in convergence of the three algorithms are empirically evaluated on

synthetic and real datasets. The accuracy of convergence is evaluated by the relative

3The optimal bandwidth hg for the Gaussian kernel is automatically selected by DT-KDE using
leave-one-out least square cross validation. The optimal bandwidth he for the Epanechnikov kernel
is determined as he = 2.214∗hg (for the univariate case) according to the equivalent kernel rescaling
in Table 6.3 in [166].

4http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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error in L1 norm as |m̃(qi)−m(qi)|1/|m(qi)|1, where m(qi) is the final convergence

of qi using naive MS and m̃(qi) is produced by the approximation algorithm. Stable

algorithms should exhibit low variance in the converged point positions over multiple

runs. We demonstrate stability by displaying the results from different runs.

Experiment 1: We first compare the three methods on two typical images for seg-

mentation (Figure 33). Table 6 shows the average running time and accuracy of

convergence (represented in relative error) for two images. The results over different

runs are not shown because the variations are mostly cancelled by applying k-means

to group the converged pixels. LSH’s running time has two parts: MS+(K,L) train-

ing. We include the training time because it is required for every dataset, and (K,L)

training comprises the majority of the running time. DT-MS(Epan.) is the best in

both speed and accuracy. The average number of iterations for IFGT-MS and DT-MS

is very small (1 to 2) because the normalized CIE LUV space is sparse for the tested

images.5 IFGT-MS is faster than DT-MS(Gauss.) but has a slightly higher relative

error. For segmentating images, such a difference can be ignored.

Table 6: Running time (in seconds) and relative error averaged over 3 runs. Top
row: woman.ppm with hg = 0.027, he = 0.0598. Bottom row: hand.ppm with
hg = 0.0186, he = 0.0412. ε = 0.01, τ = 0.1 for both images. IFGT-MS: e = 4, p = 3.
DT-MS(Epan.) gives the best result in terms of speed and accuracy.

Alg. Time Rel. Err.
naive/DT(Epan.) 55.07/0.35 0/0
naive/DT(Gauss.) 194.6/2.08 0/0
IFGT 0.47 0.0093
LSH 0.21 + 266.95 0.3154
naive/DT(Epan.) 308.74/0.92 0/0
naive/DT(Gauss.) 1258.4/5.81 0/0
IFGT 1.24 8.245e− 5
LSH 0.52 + 621.15 0.052501

5IFGT-MS often returns NaN because absolute error pruning creates zeroes in the numerator
and the denominator of m(qi).
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DT(Epan.) IFGT DT(Gauss.) LSH

Figure 33: Size of woman: 116× 261. Size of hand: 303× 243.

Experiment 2: The segmentation is obtained by applying k-means to group the con-

verged points. This is potentially a confounding factor, since k-means can compensate

for poorly-converged points. Therefore we synthesized a dataset where k-means can-

not work well, but MS can still find the correct modes. This experiment and the

next one demonstrate MS’s ability in noise reduction of the dataset to help reveal its

intrinsic dimensionality [71]. Testing data containing 6000 2-D points was generated

by adding Gaussian noise to sampled points on two intersected half circles (the blue

dots in Figure 34), viewed as 2 c-shape clusters. Table 7 and Figure 34 again show

that DT-MS(Epan.) achieves the best overall result among speed, accuracy and sta-

bility. IFGT-MS is slightly faster than DT-MS(Epan.) with slightly bigger variations

in different runs. Naive-MS(Gauss.) runs faster than the DT-MS(Gauss.) for this

dataset. This is because when the data points are not well clustered under certain
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Table 7: Running time (in seconds) and relative error of convergence on 2-C-shape
data averaged over 3 runs. he = 8.856, hg = 4, ε = 0.2, τ = 0.01 for Epanechnikov
kernel and τ = 0.001 for Gaussian kernel. IFGT-MS: e = 8, p = 30. Nit is N/A for
LSH-MS because it uses a different loop order from IFGT-MS and DT-MS.

Alg. Time Nit Rel. Err.
naive/DT(Epan.) 38.56/11.89 22/22 0/1.8e-4
naive/DT(Gauss.) 190.21/207.6 26/26 0/1.16e-2
IFGT 10.74 25 0.015
LSH 0.58+279.73 N/A 0.1174

Table 8: Running time (in seconds) and relative error of convergence on noisyswiss-
roll.ds averaged over 3 runs. he = 4.06, hg = 1.833, ε = 0.02, τ = 0.1 for Epanechnikov
kernel and τ = 0.01 for Gaussian kernel. IFGT-MS: e = 9, p = 20. DT-MS(Epan.)
is best in both speed and accuracy.

Alg. Time Nit Rel Err.
naive/DT(Epan.) 992.39/148.16 44/44 0/1.5e-4
naive/DT(Gauss.) 4314.85/3116.9 51/51 0/0.025
IFGT 240.05 20 0.0573
LSH 3.81+713.58 N/A 0.2137

bandwidth, the pruning does not happen frequently enough to cancel the additional

cost for distance computation per each query/reference node pair.

Experiment 3: Swissroll data with additive Gaussian noise (N (0, 4)) (Figure 37).6

N = 20, 000, D = 3. Though both the number of points and the dimensionality

are larger, DT-MS(Epan.) still achieves best performance in speed, accuracy and

stability (Table 8 and Figure 35 and Figure 36).

Table 9: Running time (in seconds) and relative error of convergence on high-
dimensional data averaged over 3 runs. he = 0.49, hg = 0.2212, ε = 0.02, τ = 0.1
for both the Epanechnikov and Gaussian kernels. IFGT-MS: e = 9, p = 7. DT-
MS(Epan.) gives the best result in terms of speed and accuracy.

Alg. Time Nit Rel Err.
naive/DT(Epan.) 3515.74/516.34 7/7 0/0
naive/DT(Gauss.) 24189.8/39680 17/17 0/7.6e-6
IFGT 1260.56 2 0.2539
LSH 390.7+1026.9 N/A 0.4605

6http://isomap.stanford.edu/datasets.html
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Experiment 4: High-dimensional data (N = 68, 040, D = 16).7 The running time

and relative error of convergence are shown in Table 9. DT-MS(Epan.) again achieves

the best performance in both speed and accuracy. We could improve IFGT-MS’s

relative error further by increasing p and e (which will increase the running time),

but the algorithm failed due to memory limit. Even at its current level of accuracy,

IFGT is slower than DT-MS(Epan.). DT-MS(Gauss.) is slower than the naive case

for the same reason as explained in Experiment 2.

Summary of the Experiments. DT-MS with the Epanechnikov and the Gaussian

kernels provides consistent and accurate convergence, and it is faster than naive MS

(by two orders of magnitude in some cases with both kernels). DT-MS(Epan.) returns

almost zero relative error when compared to the naive case. DT-MS(Gauss.) also

returns zero relative error for well-clustered data (Table 6). For less well-clustered

data, DT-MS(Gauss.) returns slightly bigger relative error than DT-MS(Epan.), but

the error is small enough to be safely ignored (Table 8, 9).

DT-MS(Epan.) is always faster than DT-MS(Gauss.) in our datasets, because

the Epanechnikov kernel has finite extent and can be pruned more frequently than

the Gaussian kernel with zero approximation error [78]. The Epanechnikov kernel is

also optimal in the sense of minimizing asymptotic mean integrated squared error, so

it is statistically preferred. For some datasets the relative error for DT-MS(Gauss.)

is bigger than τ (Table 7, 8). This is because τ controls the relative error of m̃(qi) in

one iteration of MS, not in the converged result. Thus, the approximated trajectory

of a point may not match the one computed by the naive method.

DT-MS(Epan.) always dominates IFGT-MS and LSH-MS in speed, accuracy

and stability. In addition, DT-MS(Epan.) requires no parameter tuning. IFGT-

MS can achieve very good speedup and accuracy, if the parameters are set correctly

(Table 7 and Figure 34). LSH-MS with an adequate (K,L) pair is very fast. However,

7http://www.ics.uci.edu/∼kdd/databases/CorelFeatures/CorelFeatures.data.html
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training (K,L) takes much time and is dependent on the dataset and the search range

of (K,L). Both IFGT-MS and LSH-MS require trial-and-error, manual tuning of

parameters and also require much more storage than DT-MS.

6.5 Conclusion

This chapter presents a new algorithm DT-MS for accelerating mean shift. It extends

the dual-tree method to the fast approximation of the signed mean vector in MS. Our

experiments have demonstrated its fast, accurate and stable approximation of MS.

Especially with the Epanechnikov kernel, DT-MS scales quite well to larger datasets

with higher dimensions. It has the best performance in terms of speed, accuracy and

stability in comparison to IFGT-MS, LSH-MS and DT-MS(Gauss.). We note that

there is an interesting follow-up work [187].
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Figure 34: Accuracy/stability of convergence. Converged queries (red) imposed
on the original data (blue). Stability illustrated by the converged queries of 3
runs(indicated by 3 colors).
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naive-MS(Epan.) naive-MS(Gauss.)

DT-MS(Epan.) DT-MS(Gauss.)

Figure 35: Accuracy and stability of convergence: For clarity all the MS results (red)
are imposed on the original swissroll (blue). Stability is illustrated by the converged
queries of 3 runs (indicated by 3 colors). For comparison, the results obtained by the
naive MS are shown in the top row.
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naive-MS(Epan.) naive-MS(Gauss.)

IFGT-MS LSH-MS

Figure 36: Accuracy and stability of convergence: For clarity all the MS results (red)
are imposed on the original swissroll (blue). Stability is illustrated by the converged
queries of 3 runs (indicated by 3 colors). For comparison, the results obtained by the
naive MS are shown in the top row.
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Figure 37: Noisy swissroll (in blue) and the clean swissroll (in red).

Figure 38: For each image segmentation pair, top: DT-MS, bottom: naive-MS.
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CHAPTER VII

BEYOND PAIRWISE INTERACTIONS: FAST

SUMMATION METHODS FOR N-TUPLE CONTINUOUS

FUNCTIONS

In this chapter, we generalize previous algorithmic frameworks for rapidly computing

pair-wise summations to include higher-order summations. Suppose we are given a

set of particles X = {x1, · · · ,xN} in D-dimensional space. We first define the com-

putational problem to be tackled.

Problem: For x ∈ X and a n-tuple function φ : RD × · · · × RD︸ ︷︷ ︸
n copies

→ R, the probability

guarantee 0 < α ≤ 1, the relative error level ε > 0, and the following form1:

Φ(x; X× · · · ×X︸ ︷︷ ︸
(n−1) copies

) =
∑

xi2
∈X\{x}

∑
xi3
∈X\{x}
i2<i3

· · ·
∑

xin∈X\{x}
in−1<in

φ(x,xi2 , · · · ,xin) (7.0.1)

Task: Compute an approximation Φ̃(x; X× · · · ×X︸ ︷︷ ︸
(n−1) copies

) for each x ∈ X such that

|Φ̃(x; X× · · · ×X︸ ︷︷ ︸
(n−1) copies

)− Φ(x; X× · · · ×X︸ ︷︷ ︸
(n−1) copies

)| ≤ εΦ(x; X× · · · ×X︸ ︷︷ ︸
(n−1) copies

) as fast as possible.

Sums of the form Equation (7.0.1) occur in molecular dynamics, protein structure pre-

diction, and other similar contexts. Biomolecular simulations usually break down the

interactions in complex chemical systems into balls-and-springs mechanical models

augmented by torsional terms, pairwise point charge electrostatic terms, and simple

pairwise dispersion (van der Waals) interactions, etc. However, such pairwise (n = 2)

1In computing Φ(x), we fix one of the arguments of φ as x and choose a (n − 1)-subset from
X(n−1) which does not contain x.
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Figure 39: An example multibody computation (n = 3). For each fixed argument
xi1 , Φ(xi1) equals the summation of the entries φ(xi1 ,xi2 ,xi3) in the shaded region
corresponding to xi1 .

interactions often fail to capture important, complex non-additive interactions found

in real systems. Though many researchers have argued that multibody potentials en-

able more accurate and realistic molecular modeling, the evaluation of n-body forces

for n ≥ 3 in systems beyond tiny sizes (less than 10,000 particles) has not been

possible due to the unavailability of an efficient way to realize the computation.

In this chapter we focus on computing multibody potentials of the third order

(n = 3), but frame our presentation so that the methods can easily be generalized

to handle higher-order potentials. For concreteness, we consider the Axilrod-Teller

potential (dispersion potential):

φ(xi,xj,xk) =
1 + 3 cos θi cos θj cos θk

||xi − xj||3||xi − xk||3||xj − xk||3
(7.0.2)

where θi, θj, θk are the angles at the vertices of the triangle xixjxk and || · || is the

Euclidean distance metric. This potential [9] describes induced dipole interactions

between triples of atoms, and is known to be important for the accurate computation

of the physical properties of certain noble gases.

For the first time, we introduce a fast algorithm for efficiently computing multi-

body potentials for a large number of particles. We restrict the class of multibody
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potentials to those that can be factorized as products of functions of pairwise Eu-

clidean distances. That is,

φ(xi1 , · · · ,xin) =
∏

1≤p<q≤n
φp,q(xip ,xiq) =

∏
1≤p<q≤n

φp,q(||xip − xiq ||) (7.0.3)

We extend the analytic series-expansion-based approach in [37, 86, 84] to handle

potential functions that describe n-body interactions with n > 2. Our algorithm can

compute multibody potentials within a user-specified error level.

Our work utilizes and extends a framework for efficient algorithms for so-called

generalized N-Body Problems [78], which introduced multi-tree methods. The frame-

work was originally developed to accelerate common bottleneck statistical computa-

tions based on distances, utilizing multiple kd-trees and other spatial data structures

to reduce computation times both asymptotically and practically by multiple orders of

magnitude. This work extends the framework with higher-order hierarchical series ap-

proximation techniques, demonstrating a fast multipole-type method for higher-order

interactions for the first time, effectively creating a Multibody Multipole Method.

Section 7.2 introduces the generalized N-body framework and describes a partial

extension of fast multipole-type methods to handle higher-order interactions; we will

discuss the technical difficulties for deriving all of the necessary tools for the general

multibody case. As a result, we utilize only a simple but effective approximation

using the center-of-mass approximations. Section 7.3 focuses on three-body interac-

tions, introduces methods to do potential computations under both deterministic and

probabilistic error criteria, and provides a description of the fast algorithm for the

three-body case. Section 7.4 proves that our proposed algorithms can approximate

potentials within user-specified error bounds. Section 7.5 shows experimental scala-

bility results for our proposed algorithms against the naive algorithm, under different

error parameter settings.
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7.1 Related Work

A series of papers first laid the foundations for efficiently computing sums of pairwise

potentials such as Coulombic and Yukawa potentials [37, 86, 84]. The common ap-

proach in these papers is to derive analytical series expansions of the given potential

function in either Cartesian or spherical coordinate systems. The series expansion is

then truncated after taking a fixed number of terms. The associated error bounds are

derived from summing the truncated terms in an appropriate infinite geometric sum

or bounding the remainder term using Taylor’s theorem. A recent line of work on

efficient computation of pairwise function has focused on developing numerical repre-

sentations of the potential matrix [φ(xm,xn)]Nm,n=1, rather than relying on analytical

expansion of the potential function. [129] and [99] use singular value decomposition

and the QR decomposition to compute the compressed forms of the potential function

and the three translation operators. [5, 203] take the “pseudo-particle” approach by

placing equivalent artificial charges on the bounding surface of the actual particles by

solving appropriate integral equations. All of these works have been limited to pair-

wise potential functions, and the approach does not naturally suggest a generalization

to n-body potentials with n > 2. To our knowledge, no research has been performed

on the problem of evaluating multibody potentials using a method more sophisticated

than the O(Nn) brute-force algorithm with an ad-hoc cut-off distance. [127, 126].

7.2 Generalized N-body Framework

We use a variant of kd-trees [15] to form hierarchical groupings of points based on

their locations using the recursive procedure shown in Algorithm 2.2.1. We note that

the cost of building a kd-tree is negligible compared to the actual multibody potential

computation (see Section 7.5). See Figure 7.

Step 2 in the algorithm listed in the preliminary chapter utilizes the procedure

shown in Algorithm 7.2.1 (called by setting each Pi = X for 1 ≤ i ≤ n), a recursive
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Algorithm 7.2.1 MTPotentialCanonical({Pi}ni=1)

if CanSummarize({Pi}ni=1) (Try approximation.) then
Summarize({Pi}ni=1, ε, τ, α)

else
if all of Si are leaves then

MTPotentialBase({Pi}ni=1) (Base case.)
else

Find an internal node Pk to split among {Pi}ni=1.
Propagate bounds of Pk to Pk

L and Pk
R.

MTPotentialCanonical({P1, · · · ,Pk−1,Pk
L,Pk+1, · · · ,Pn})

MTPotentialCanonical({P1, · · · ,Pk−1,Pk
R,Pk+1, · · · ,Pn})

Refine summary statistics based on the two recursive calls.

function that allows us to consider the n-tuples formed by choosing each xi from Pi; we

can gain efficiency over the naive enumeration of the n-tuples by using the bounding

box and the moment information stored in each Pi. One such information is the

distance bound computed using the bounding box (see Figure 10). CanSummarize

function first eliminates redundant recursive calls for the list of node tuples that

satisfy the following condition: if there exists a pair of nodes Pi and Pj (i < j)

among the node list P1, · · · ,Pn, such that the maximum depth-first rank of Pi is

less than the minimum depth-first rank of Pj. In this case, the function returns true.

See Figure 7 and [132]. In addition, if any one of the nodes in the list includes one of

the other nodes (i.e. there exists nodes Pi and Pj such that the minimum depth-first

rank of Pi < the minimum depth-first rank of Pj < the maximum depth-first rank

of Pj < the maximum depth-first rank of Pi), CanSummarize returns false. We do

this because it is a bit tricky to count the number of tuples for each point in this case

(see Figure 40).

Otherwise, CanSummarize function tests whether each potential sum for x ∈
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(a) (b)

(c) (d)

Figure 40: For n = 3, four canonical cases of the three “valid” (i.e. the particle
indices in each node are in increasing depth-first order) node tuples encountered
during the algorithm: (a) All three nodes are equal; (b) S1 and S2 are equal, and S3

comes later in the depth-first order; (c) S2 and S3 are equal and come later in the
depth-first order; (d) All three nodes are different.

⋃
1≤m≤n

Pm can be approximated within the error tolerance determined by the algo-

rithm. For example, if n = 4, we test for each x1 ∈ P1, x2 ∈ P2, x3 ∈ P3, x4 ∈ P4,

Φ(x1;P2 ×P3 ×P4) =
∑

xi2
∈P2\{x1}

∑
xi3
∈P3\{x1}
i2<i3

∑
xi4
∈P4\{x1}
i3<i4

φ(x1,xi2 ,xi3 ,xi4)

Φ(x2;P1 ×P3 ×P4) =
∑

xi1
∈P1\{x2}

∑
xi3
∈P3\{x2}
i1<i3

∑
xi4
∈P4\{x2}
i3<i4

φ(x2,xi1 ,xi3 ,xi4)

Φ(x3;P1 ×P2 ×P4) =
∑

xi1
∈P1\{x3}

∑
xi2
∈P2\{x3}
i1<i2

∑
xi4
∈P4\{x3}
i2<i4

φ(x3,xi1 ,xi2 ,xi4)

Φ(x4;P1 ×P2 ×P3) =
∑

xi1
∈P1\{x4}

∑
xi2
∈P2\{x4}
i1<i2

∑
xi3
∈P3\{x4}
i2<i3

φ(x4,xi1 ,xi2 ,xi3)

can be approximated. If the approximation is not possible, then the algorithm con-

tinues to consider the data at a finer granularity; it chooses an internal node Pk
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(typically the one with the largest diameter) to split among {Pi}ni=1. Before recurs-

ing to two sub-calls in Line 9 and Line 10 of Algorithm 7.2.1, the algorithm can

optionally push quantities from a node that is being split to its child nodes (Line

8). After returning from the recursive calls, the node that was just split can refine

summary statistics based on the results accumulated on its child nodes. The details

of these operations are available in earlier papers [78, 82, 80, 77, 115].

The basic idea is to terminate the recursion as soon as possible, i.e. by consid-

ering a tuple of large subsets and avoiding the number of exhaustive leaf-leaf-leaf

computations. We note that the CanSummarize and Summarize functions effec-

tively replace unwieldy interaction lists used in FMM algorithms. Interaction lists in

n-tuple interaction, if naively enumerated, can be large depending on the potential

function φ and the dimensionality D of the problem, whereas the generalized N -body

approach can handle a wide spectrum of problems without this drawback.

7.2.1 Algorithm for Pairwise Potentials (n = 2)

The general algorithmic strategy for pairwise potentials φ(·, ·) is described in [78, 82,

80, 77], and consists of the following three main phases. Suppose we are given a set

of “source” points (denoted as reference points) and a set of “target” points (denoted

as query points).

1. Bottom-up phase: Compute far-field moments of order p in every leaf node

of the reference tree. The resulting far-field expansion of each reference node

P2 is given by:

Φ(x;P2) =
∑
α≥0

 ∑
xi2
∈P2

(−1)α

α!
(xi2 − cP2)α

Dαφ(x− cP2)

=
∑
α≥0

Mα(P2, cP2)Dαφ(x− cP2) (7.2.1)

Φ(x; P2) reads as “the potential sum on x due to the contribution of P2” and

Mα(P2, cP2) as “the α-th far-field coefficient of P2 centered at cP2 .” Because it
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is impossible to store an infinite number of far-field moments Mα(P2, cP2), we

truncate the Taylor expansion up to the order p (determined either arbitrarily

or by an appropriate error criterion):

Φ̃(x;P2;F(cP2 , p)) =
∑
|α|≤p

Mα(P2, cP2)Dαφ(x− cP2) (7.2.2)

such that
∣∣∣Φ̃(x; P2)− Φ(x; P2)

∣∣∣ is sufficiently small. Φ̃(x; P2;F(cP2 , p)) reads

as “the approximated potential sum on x due to the points owned by P2 using

up to the p-th order far-field expansion of P2 centered at cP2 .”

For internal reference nodes, perform the far-to-far (F2F) translation to convert

the far-field moments owned by the child nodes to form the far-field moments

for their common parent node P2. For example, the far-field moments of PL
2

centered at cPL2 is shifted to cP2 by:

Φ̃(x;P2
L;F(cP2 , p)) =

∑
γ≤p

Mγ(P2
L, cP2)(−1)γDγφ(x− cP2) (7.2.3)

where

Mγ(P2
L, cP2) =

∑
α≤γ

Mα(P2
L, cP2

L)(cP2
L − cP2)γ−α

(γ −α)!
(7.2.4)

Note that there is no error incurred in each F2F translation, i.e. Φ̃(x; P2
L;F(cP2

L , p)) =

Φ̃(x; P2
L;F(cP2 , p)) for any query point y from the intersection of the domains

of x for Φ̃(x; P2
L;F(cP2

L , p)) and Φ̃(x; P2
L;F(cP2 , p)); the domain for which the

far-field expansion remains valid depends on the error bound criterion for each

potential. The far-field moments of the parent node P2 is the sum of the trans-

lated moments of its child nodes: Mγ(P2, cP2) =
∑
α≤γ

Mα(P2
L,c

P2
L )(c

P2
L−cP2

)γ−α

(γ−α)!
+

Mα(P2
R,c

P2
R )(c

P2
R−cP2

)γ−α

(γ−α)!

2. Approximation phase: For a given pair of the query and the reference nodes,

determine the order of approximation and either (1) translate the far-field mo-

ments of the reference node to the local moments of the query node (2) or
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recurse to their subsets, if the F2L translation is more costly than the direct

exhaustive method.

Let us re-write the exact contribution of P2 to a point x ∈ P1:

Φ(x;P2) =
∑
β≥0

1

β!

∑
α≥0

Mα(P2, cP2)Dα+βφ(cP1 − cP2)(x− cP1)β

=
∑
β≥0

 ∑
xi2
∈P2

1

β!
Dβφ(cP1 − xi2)

 (x− cP1)β =
∑
β≥0

Nβ(P2, cP1)(x− cP1)β

(7.2.5)

where Nβ(P2, cP1) reads as “the exact local moments 2 contributed by the

points in P2 centered at cP1 .” Truncating Equation (7.2.5) at |β| ≤ p′ for some

p′ ≤ p yields a direct local accumulation of order p.

From the bottom-up phase, we know that |α| ≤ p. Similarly, we can store only

a finite number of local moments up to the order p′ ≤ p and thus |β| ≤ p′. We

get the local expansion for P1 formed due to translated far-field moments of

P2:

Φ̃(x;P2; Ñ(cP1 , p
′)) =

∑
|β|≤p′

 1

β!

∑
|α|≤p′

Mα(P2, cP2)Dα+βφ1,2(cP1 − cP2)

 (x− cP1)β

=
∑
|β|≤p′

Ñβ(P2, cP1)(x− cP1)β (7.2.6)

where Ñβ(P2, cP1) reads as “approximation to the exact local momentsNβ(P2, cP1)”

and Φ̃(x; P2; Ñ(cP1 , p
′)) as “the approximated potential sum on x due to the

points in P2 using up to the p-th order inexact local moments centered at

cP1”. The F2L translation is applied only if
∣∣∣Φ̃(x; P2; Ñ(cP1 , p

′))− Φ(x; P2)
∣∣∣

is sufficiently small.

3. Top-down phase: Propagate the local moments of each query node (i.e.

pruned quantities) to its child nodes using the local-to-local (L2L) operator.

2We use N to denote the local moments because a “near-field” expansion is another widely used
term for a local expansion. It avoids the potential notational confusion in the later parts of the
paper.
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Suppose we have the following local expansion for x ∈ P1:

Φ̃(x;F2L(P1)∪DL(P1); Ñ(cP1 , p
u
P1

)) =
∑

|α|≤puP1

Ñα(F2L(P1)∪DL(P1), cP1)(xi1−cP1)α

where puP1
is the maximum approximation order among (1) the F2L translations

performed for P1 and all of the ancestor nodes of P1 (denoted by F2L(P1));

and (2) the direct local accumulations of P1 and those passed down from all of

the ancestors of P1 (denoted by DL(P1)). Shifting the expansion to another

center c∗P1
∈ P1 is given by:

Φ̃(x;F2L(P1) ∪DL(P1); Ñ(c∗P1
, puP1

)) (7.2.7)

=
∑

|α|≤puP1

∑
β≥α

(
β

α

)
Ñβ(F2L(P1) ∪DL(P1), cP1)(c∗P1

− cP1)β−α

 (x− c∗P1
)α

=
∑

|α|≤puP1

Ñα(F2L(P1) ∪DL(P1), c∗P1
)(x− c∗P1

)α (7.2.8)

This shifted moments are added to the local moments of each child of P1, in

effect transmitting the pruned contributions downward. At each query leaf, we

evaluate the resulting local expansion at each query point.

7.2.2 Far-field Expansion for Three-body Potentials (n = 3)

In this section, we define far-field expansions for a three-body potential that is a

product of functions of pairwise distances (see Equation (1.1.1)):

φ(xi1 ,xi2 ,xi3) = φ1,2(xi1 ,xi2) · φ1,3(xi1 ,xi3) · φ2,3(xi2 ,xi3) (7.2.9)

We define the far-field moments of a node the same way defined for the pairwise

potential case. Suppose we are given three nodes P1 6= P2 6= P3 from the tree. The

following (n− 1)-nested sum expresses the contribution for x ∈ P1 due to the other

nodes P2 and P3:

Φ(x;P2 ×P3) =
∑

xi2
∈P2

∑
xi3
∈P3

φ(x,xi2 ,xi3) (7.2.10)
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cP3

P3

P2

P1

cP2

x

Figure 41: A far-field expansion at xi1 created by the moments of P2 and P3. Note
the double-arrow between the nodes P2 and P3 corresponding to the basis functions
Dα−α1,2−α1,3φ2,3(cP2 − cP3) (see Equation 7.2.11).

The basic goal here is to decompose Equation (7.2.10) into sums of products of the

far-field moments of each node. A far-field expansion for xi1 ∈ P1 induced by the

far-field moments of P2 and P3 is given by (see Figure 41):

Φ(x;P2 ×P3)

=
∑

xi2
∈P2

∑
xi3
∈P3

∑
α1,2≥0

(xi2 − cP2)α1,2

α1,2!
(−1)α1,2Dα1,2φ1,2(x− cP2)

∑
α1,3≥0

(xi3 − cP3)α1,3

α1,3!
(−1)α1,3Dα1,3φ1,3(x− cP3)

∑
α2,3≥0

∑
β2,3≤α2,3

(xi2 − cP2)β2,3

β2,3!

(xi3 − cP3)α2,3−β2,3

(α2,3 − β2,3)!
(−1)α2,3−β2,3Dα2,3φ2,3(cP2 − cP3)
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By setting α = α1,2 + α1,3 + α2,3 and pushing the summations over xi2 ∈ P2 and

xi3 ∈ P3 inside, we get:

Φ(x;P2 ×P3) =
∑
α≥0

∑
α1,2≤α

∑
α1,3≤α−α1,2

∑
β2,3≤α−α1,2−α1,3

(
α1,2 + β2,3

α1,2

)(
α−α1,2 − β2,3

α1,3

)

Mα1,2+β2,3(P2, cP2)Mα−α1,2−β2,3(P3, cP3)(−1)β2,3

Dα1,2φ1,2(xi1 − cP2)Dα1,3φ1,3(xi1 − cP3)Dα−α1,2−α1,3φ2,3(cP2 − cP3)

(7.2.11)

Truncating α at p-th order yields:

Φ̃(x;P2 ×P3;F(cP2 × cP3 , p))

=
∑
|α|≤p

∑
α1,2≤α

∑
α1,3≤α−α1,2

∑
β2,3≤α−α1,2−α1,3

(
α1,2 + β2,3

α1,2

)(
α−α1,2 − β2,3

α1,3

)

Mα1,2+β2,3(P2, cP2)Mα−α1,2−β2,3(P3, cP3)(−1)β2,3

Dα1,2φ1,2(xi1 − cP2)Dα1,3φ1,3(xi1 − cP3)Dα−α1,2−α1,3φ2,3(cP2 − cP3) (7.2.12)

where Φ̃(x; P2×P3;F(cP2 × cP3 , p)) reads as “the p-th order far-field expansion at x

due to the moments of P2 centered at cP2 and the moments of P3 centered at cP3 .”

Computational Cost of Evaluating the Far-field Expansion. The first three

summations over α, α1,2, α1,3 collectively contribute O(p3) terms, and the inner

summation contributing at most O(p3) terms. Thus, evaluating the p-th order far-

field expansion for a three-body potential on a single point takes O (p6) time.

7.2.3 Far-field Expansion for General Multibody Potentials (n ≥ 2)

For a general multibody potential that can be expressed as products of pairwise

functions (see Equation (7.0.3)), the far-field expansion induced by the points in

P2, · · · ,Pn for x ∈ P1 is:

Φ(x;P2 × · · · ×Pn)

=
∏

2≤k≤n

∑
xik
∈Pk

∑
α1,k≥0

(xik − cPk
)α1,k

α1,k!
(−1)α1,kDα1,kφ1,k(x− cPk

)

∏
2≤s<t≤n

∑
αs,t≥0

∑
βs,t≤αs,t

(xis − cPs)
βs,t

βs,t!

(xit − cPt)
αs,t−βs,t

(αs,t − βs,t)!
(−1)αs,t−βs,tDαs,tφs,t(cPs − cPt)
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Focus on grouping and multiplying monomial powers of (xik−cPk
) for each 2 ≤ k ≤ n:

(xik − cPk
)
α1,k+

k−1∑
u=2

(αu,k−βu,k)+
n∑

v=k+1
βk,v

α1,k!
k−1∏
u=2

(αu,k − βu,k)!
n∏

v=k+1

βk,v!

Let ξk = α1,k +
k−1∑
u=2

(αu,k − βu,k) +
n∑

v=k+1

βk,v and bk = ξk!

α1,k!
k−1∏
u=2

(αu,k−βu,k)!
n∏

v=k+1
βk,v !

.

Then,

Φ(x;P2 × · · · ×Pn)

=
∏

2≤s<t≤n

∏
2≤k≤n

∑
α1,k≥0

∑
αs,t≥0

∑
βs,t≤αs,t

bk Mξk(Pk, cPk
) (−1)βs,t Dα1,kφ1,k(x− cPk

)Dαs,tφs,t(cPs − cPt)

(7.2.13)

Equation (7.2.13) is a convolution of far-field moments of P2, · · · ,Pn. We can trun-

cate the expansion above for terms for |α| =
∣∣∣∣ ∑
1≤r<s≤n

αr,s

∣∣∣∣ > p for some p > 0. Note

that Equation (7.2.13) includes the n = 2 and n = 3 cases.

Φ̃(x;P2 × · · · ×Pn;F(cP2 × · · · × cPn , p))

=
∏

2≤s<t≤n

∏
2≤k≤n

∑
|α|≤p

∑
α1,k≥0

∑
αs,t≥0

∑
βs,t≤αs,t

bk Mξk(Pk, cPk
) (−1)βs,t

Dα1,kφ1,k(x− cPk
)Dαs,tφs,t(cPs − cPt) (7.2.14)

Computational Cost of Evaluating the Far-field Expansion. The summations

over αr,s for 1 ≤ r < s ≤ n collectively contribute O(p3) terms, and each inner

summation over βs,t contributing at most O(p3) terms. Thus, evaluating the p-th

order far-field expansion for a general multibody potential of the form Equation (7.0.3)

on a single point takes O
(
p3((n−1

2 )+1)
)

time. In practice, we are forced to use p = 0

for n > 2 unless most φp,q(xip ,xiq)’s in Equation (7.0.3) are constant functions.
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P3

P2

P1

x cP1

?

?

Figure 42: A local expansion created inside the node P1 at x by directly accumulating
each point in P2 and P3 (see Equation (7.2.15)). We are not aware of a technique to
express an interaction between a particle in P2 and a particle in P3 (marked by the
? symbol) for p > 0.

7.2.4 Local Expansion for Three-body Potentials (n = 3)

Unlike the far-field expansion case, we are presented a fundamental difficulty. In

order to derive a local expansion, we need to express the influence of each non-

evaluation point xij on the evaluation point x at a center near x. However, breaking

up the interaction among the non-evaluation points (i.e. xij ’s in the arguments of

φ(x,xi1 , · · · ,xin−1)) without loss of information is hard. To see this: take a three-body

potential expressible in products of pairwise functions (see Figure 42). Expanding

near cP1 inside the node P1 yields an expansion valid for x ∈ P1:

Φ(x;P2 ×P3)

=
∑

xi2
∈P2

∑
xi3
∈P3

∑
α1,2≥0

Dα1,2φ1,2(cP1 − xi2)

α1,2!
(x− cP1)α1,2

∑
α1,3≥0

Dα1,3φ1,3(cP1 − xi3)

α1,3!
(x− cP1)α1,3

∑
α2,3≥0

Dα2,3φ2,3(cP1 − xi3)

α2,3!
(xi2 − cP1)α2,3
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Again, let α = α1,2 +α1,3 +α2,3. Switching the orders of summations results:

Φ(x;P2 ×P3) =
∑
α≥0

∑
α1,2≤α

∑
α1,3≤α−α1,2

 ∑
xi2
∈P2

Dα1,2φ1,2(cP1 − xi2)

α1,2!
(xi2 − cP1)α2,3


 ∑

xi3
∈P3

Dα1,3φ1,3(cP1 − xi3)

α1,3!

Dα2,3φ2,3(cP1 − xi3)

α2,3!

 (x− cP1)α1,2+α1,3

=
∑
α≥0

 ∑
α1,2≤α

∑
α1,3≤α−α1,2

N̄α(P2, cP1) N̄α(P3, cP1)

 (x− cP1)α1,2+α1,3

(7.2.15)

We need the exponent of (x−cP1) to match α to be able to define the local moments

inside P1. Unless α2,3 = 0 (i.e. ignore the interaction between a particle in the second

set and a particle in the third set), this is not possible. Since we encounter a similar

problem in the general case, we will skip its discussion.

7.3 Simpler Algorithm for General Multibody Potentials

Instead of trying to derive the full-fledged tools for general multibody potentials, we

focus on deriving something simpler. Let us focus on the n = 3 case. For a given

set of three pairwise disjoint nodes: P1, P2, P3 and a monotonically decreasing3

three-body potentials such as φ(x1,x2,x3) = 1
||x1−x2||ν1,2 ||x1−x3||ν1,3 ||x2−x3||ν2,3 ,

∀xi ∈ P1,Φ̃(xi; P2 ×P3) = |P2||P3|φ(cP1 , cP2 , cP3)

∀xj ∈ P2,Φ̃(xj; P1 ×P3) = |P1||P3|φ(cP1 , cP2 , cP3)

∀xk ∈ P3,Φ̃(xk; P1 ×P2) = |P1||P2|φ(cP1 , cP2 , cP3)

which can be obtained by setting p = 0 in Equation (7.2.12). This means that we can

get a cheaper approximation using the number of points owned by each node. Using

the pairwise minimum and maximum node distances yields:

φ(du(P1,P2), du(P1,P3), du(P2,P3)) ≤ φ(cP1 , cP2 , cP3) ≤ φ(dl(P1,P2), dl(P1,P3), dl(P2,P3))

3“Monotonic” multibody potentials decrease in value if one of the Euclidean distance arguments
is increased while the other two are held constant.
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It is straightforward to generalize this for the n ≥ 2 case.

Non-monotonic Potentials: For non-monotonic potentials such as the Lennard-

Jones potential φ(x1,x2) = a
r12
− b

r6
, we can compute the critical points of φ and

determine the intervals of monotonicity of φ and consider how φ behaves in the

distance bound range between dl(P1,P2) and du(P1,P2). We take a simpler approach

that results in an algorithm that is easier to code; we break up the potential into two

parts such that φ(x1,x2, · · · ,xn) = φ+(x1,x2, · · · ,xn)−φ−(x1,x2, · · · ,xn), and get

a lower and upper bound (though a looser bound) on the contributions from the

positive potential φ+ and negative potential φ−.

7.3.1 Specifying the Approximation Rules

The overall algorithm which also subsumes the pairwise potential case (n = 2) was

shown in Algorithm 7.2.1. We can now specify the CanSummarize function for the

general multibody case. For guaranteeing τ absolute error bound criterion (Defini-

tion 2.4.1), the CanSummarize function returns true if:

∣∣φ(du(P1,P2), · · · , du(Pn−1,Pn))− φ(dl(P1,P2), · · · , dl(Pn−1,Pn))
∣∣ ≤ τ

T root

where T root =
(
N−1
n−1

)
(i.e. the total number of tuples in each slice in Figure 39). Let

us also define Ti to be the number of tuples containing a fixed particle in Pi (see

Figure 40). For example, for n = 3, the corresponding Summarize function would

accumulate for each node:

for P1: |P2||P3|φ(cP1 , cP2 , cP3), for P2: |P1||P3|φ(cP1 , cP2 , cP3), and for P3:

|P1||P2|φ(cP1 , cP2 , cP3).

Hybrid Absolute/Relative Error Guarantee. The algorithm for guaranteeing

the hybrid absolute/relative error bound (Definition 2.4.2) deterministically (α = 0)

is not so much different from that for guaranteeing the absolute error bound. In

each node P , we maintain the lower bound on the accumulated potentials for the

particles in P (denoted as Φl(P ), a summary statistic stored in P ). The function
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Figure 43: Three-body multipole methods for p = 0 in a nutshell.

CanSummarize returns true if,

∣∣φ(du(P1,P2), · · · , du(Pn−1,Pn))− φ(dl(P1,P2), · · · , dl(Pn−1,Pn))
∣∣

≤
ε min

1≤i≤n
(Φl(Pi) + δl(Pi; P1 × · · · ×Pi−1 ×Pi+1 × · · · ×Pn)) + τ

T root
(7.3.1)

where each δl(Pi; P1×· · ·×Pi−1×Pi+1×· · ·×Pn) =
∏

1≤j≤i−1
i+1≤j≤n

|Pj|φ(du(P1,P2), · · · , du(Pn−1,Pn))

(which is computed just using the contribution of the other nodes on the i-th node) is

added to the currently running lower bound on each node Φl(Pi) to reflect the most

recently available information on the lower bound. Φl(Pi) can be incremented and

tightened as the computation progresses, either in the base case or when the recursive

sub-calls in Algorithm 7.2.1 are completed (Line 11).

Monte Carlo-based Approximations. The error bounds provided by the bound-

ing boxes (see Figure 10) assume that all pairs of points selected between the two

nodes are collapsed to two positions that achieve the minimum distance (and vice

versa for the maximum distance); therefore, these bounds are very pessimistic and

loose. Here we introduce a method for approximating the potential sums with a
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Algorithm 7.3.1 CanSummarize({Pi}ni=1): the Monte Carlo-based approximation.

if ζ ·mlimit ≤ min{T1, T2, T3} then
for each Pi ∈ {Pi}ni=1 do

if i == 1 or Pi 6= Pi−1 then
for xi ∈ Pi do

if CanSummarizeMCPoint(xi, i, {Pi}ni=1) == false then
return false

return true
else

return false

probabilistic bound satisfying Definition 2.4.3. We can trade determinism for further

gain in efficiency. We have an additional parameter α that controls the probability

level at which the deviation between each approximation and its corresponding exact

values holds. This was introduced first in [96, 95] for probabilistic approximations

of aggregate sums and later extended in [113] to handle per-particle quantities. The

theorem that we rely on for probabilistic approximation is the following:

For three-body potentials, suppose we are given the set of three nodes, P1, P2,

and P3. Let us consider x ∈ P1 (similar approximations can be made for each point

in P2 and P3), and the contribution of P2 and P3 to its potential sum:

Φ(x;P2 ×P3) =
∑

xi2
∈X\{x}

∑
xi3
∈X\{x}
i2<i3

φ (x,xi2 ,xi3)

We can sample m potential values φ(xi1 ,xi2 ,xi3) from the empirical distribution

F formed by the 3-tuples formed among S1, S2, and S3 that contain x in the list.

From the m samples, we get the empirical distribution F x
m, from which we form an

approximate Φ̃(x; P2 ×P3):

Φ̃(x;P2 ×P3;Fx
m) = T1µ̃Fxi

m
=
T1

m

m∑
s=1

φ(xis1
,xis2

,xis3
)

where xis1
= x for all 1 ≤ s ≤ m. For sufficiently large values of m, we can assume

that the discrepancy provided by the Berry-Esseen theorem is small and concentrate

on the sample variance of the sample mean distribution. The sample variance of the

sample mean distribution σ̃µ
F
xi
m

is given by:
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Algorithm 7.3.2 CanSummarizeMCPoint(x, i, {Si}ni=1): Pruning function for
the Monte Carlo based approximation per each point.

F x ← ∅
repeat

Get a random n-tuple (x1, · · · ,xi−1,x,xi+1, · · · ,xn) where xj ∈ Sj

F x ← F x ∪ {φ(xj, · · · ,xj−1,x,xj+1, · · · ,xn)}
until (zα/2σ̃µFx ≤ τ

T root and |F x| ≥ 30) or |F x| ≥ mlimit

return zα/2σ̃µFx ≤ τ
T root

σ̃µ
F
xi
m

=
σ̃Fxi

m√
m

=
1√
m

√√√√ 1

m− 1

m∑
s=1

(φ(xis1
,xis2

,xis3
)− µ̃Fxi

m
)2

where σ̃ is the sample variance. Given m i.i.d. samples, with probability of at least

(1− α), ∣∣∣Φ̃(x;P2 ×P3;Fx
m)− Φ(x;P2 ×P3)

∣∣∣ ≤ T1zα/2σ̃µ
F
xi
m

where zα/2 is the number of standard deviations on either side of µ̃Fxi
m

to give at least

(1− α) coverage under the normal distribution.

Modifications to the algorithm. A Monte Carlo sampling based routine is shown

in Algorithm 7.3.1. The function CanSummarize determines whether performing

Monte Carlo approximations (which involves iterating over each unique point x ∈
n⋃
i=1

Pi) with at least mlimit samples is computationally cheaper than the brute-force

computation. ζ is a global variable that dictates the desired amount of speedup needed

for applying Monte Carlo approximations, rather than recursing to smaller subsets of

the three nodes. If a desired speedup could be achieved, it loops for each unique point

in x ∈
n⋃
i=1

Pi and computes the sample mean of the potential values of the tuples that

contain x, and the corresponding variance of the sample mean until (1) the desired

error is achieved; or (2) exceeds the number of trial samples mlimit . Algorithm 7.3.1 is

the form used for bounding the absolute error of each potential sum error by τ with

at least probability of (1− α). For bounding the hybrid absolute/relative error with

at least probability of (1−α) (Definition 2.4.3), we replace the termination condition
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Algorithm 7.3.3 SummarizeMC({Si}ni=1, {Ti}ni=1, β): Monte Carlo based approxi-
mation.

for each Si ∈ {Si}ni=1 do
if i == 1 or Si 6= Si−1 then

for xi ∈ Si do
Φ̃(xi)← Φ̃(xi) + Ti · µ̃Fxi , Φl(xi)← Φl(xi) + Ti ·

(
µ̃Fxi − zβ/2σ̃µFxi

)
in the loop: zα/2σ̃µFx ≤ τ

T root with:

Ti · zα/2σ̃µFxi
≤
ε(Φl(Pi) + Ti(µ̃Fxi − zα/2σ̃µFxi

)) + τTi

T root
(7.3.2)

7.4 Correctness of the Algorithm

The correctness of our algorithm for the deterministic hybrid absolute/relative error

criterion is given by:

Theorem 7.4.1. Algorithm 7.2.1 with the function CanSummarize with the relative

error bound guarantee (Equation 7.3.1) produces approximation Φ̃(xi1) for xi1 ∈ X

such that

|Φ̃(xi1)− Φ(xi1)| ≤ εΦ(xi1) + τ (7.4.1)

Proof. (By mathematical induction) For simplicity, let us focus on n = 3. We induct

on the number of points |P1 ∪ P2 ∪ P3| encountered during the recursion of the

algorithm.

Base case: There are two parts to this part of the proof.

• Line 1 of the function MTPotentialCanonical in Algorithm 7.2.1: any

set of nodes P1, P2, P3 for which the function CanSummarize returns true
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satisfies the error bounds for xiu ∈ Pu for u = 1, 2, 3:

∀xi1 ∈ P1,
∣∣∣Φ̃(xi1 ;P2 ×P3)− Φ(xi1 ;P2 ×P3)

∣∣∣
≤
Txiu×P2×P3

T root

(
εΦl(P1) + τ

)
≤
Txiu×P2×P3

T root
(εΦ(xi1) + τ)

∀xi2 ∈ P2,
∣∣∣Φ̃(xi2 ;P1 ×P3)− Φ(xi2 ;P1 ×P3)

∣∣∣
≤
Txiu×P2×P3

T root

(
εΦl(P2) + τ

)
≤
Txiu×P2×P3

T root
(εΦ(xi2) + τ)

∀xi3 ∈ P3,
∣∣∣Φ̃(xi3 ;P1 ×P2)− Φ(xi3 ;P1 ×P2)

∣∣∣
≤
Txiu×P2×P3

T root

(
εΦl(P3) + τ

)
≤
Txiu×P2×P3

T root
(εΦ(xi3) + τ) (7.4.2)

where Txiu×P2×P3 denotes the number of tuples chosen by fixing xiu and select-

ing the other two from P2 and P3 and so on.

• The function call MTPotentialBase in Algorithm 7.2.1: each xi1 ∈ P1 and

xi2 ∈ P2 and xi3 ∈ P3 exchange contributions exactly and incur no approxi-

mation error.

Inductive step: Suppose we are given the set of three nodes P1, P2, and P3 (at

least one of which is an internal node) in the function MTPotentialCanonical.

Suppose the three tuples P1, P2, P3 could not be pruned, and that we need to recurse

on each child of P1, P2, and P3.

By assumption, CanSummarize returns false if any one of the nodes P1, P2,

P3 includes one of the other nodes (see Section 7.2). For n = 3, we can assume

that the possible node tuple cases that could be considered for pruning are shown in

Figure 40. Let {{Pk
s }3

s=1}tk=1 be the set of set of three nodes considered during the

recursive sub-computations using the child nodes of each P1, P2, and P3; note that

the maximum value of t is 8 for three-body interactions. Note that for each k, P k
s

is either (1) the node Ps itself (2) the left child node of Ps (3) the right child node

of Ps. Therefore, for each k = 1, 2, · · · , t, |Pk
1 ∪ Pk

2 ∪ Pk
3| ≤ |P1 ∪ P2 ∪ P3|. The

equality holds when all of P1, P2, and P3 are leaf nodes for which the error criterion

is satisfied by the base case function (no error incurred).

145



If any one of P1, P2, and P3 is an internal node, then we are guaranteed that

|Pk
1 ∪ Pk

2 ∪ Pk
3| < |P1 ∪ P2 ∪ P3| for all k = 1, · · · , t. We invoke the inductive

hypothesis to conclude that for each k and for each xiu ∈ Pk
u for u = 1, 2, 3:

∀xi1 ∈ Pk
1,
∣∣∣Φ̃(xi1 ;Pk

2 ×Pk
3)− Φ(xi1 ;Pk

2 ×Pk
3)
∣∣∣

≤
Txi1

×Pk
2×Pk

3

T root

(
εΦl(Pk

1) + τ
)
≤
Txi1

×Pk
2×Pk

3

T root
(εΦ(xi1) + τ)

∀xi2 ∈ Pk
2,
∣∣∣Φ̃(xi2 ;Pk

1 ×Pk
3)− Φ(xi2 ;Pk

1 ×Pk
3)
∣∣∣

≤
Txi2

×Pk
1×Pk

3

T root

(
εΦl(Pk

2) + τ
)
≤
Txi2

×Pk
1×Pk

3

T root
(εΦ(xi2) + τ)

∀xi3 ∈ Pk
3,
∣∣∣Φ̃(xi3 ;Pk

1 ×Pk
2)− Φ(xi3 ;Pk

1 ×Pk
2)
∣∣∣

≤
Txi3

×Pk
1×Pk

2

T root

(
εΦl(Pk

3) + τ
)
≤
Txi3

×Pk
1×Pk

2

T root
(εΦ(xi3) + τ)

where T ks is the number of 3-tuples formed among P k
1 , P k

2 , P k
3 that contain a fixed

point in P k
s . By the triangle inequality, Equation 7.4.1 holds by extending to P1 =

P2 = P3 = X since the number of encountered tuples for each particle add up to

T root .

We are now ready to prove the correctness of our algorithm for bounding the

relative error probabilistically.

Theorem 7.4.2. Algorithm 7.2.1 with the function CanSummarize with the mod-

ification described in Equation 7.3.2 produces approximations Φ̃(xi) for xi ∈ X such

that

|Φ̃(xi)− Φ(xi)| ≤ εΦ(xi) + τ (7.4.3)

with the probability of at least 1− α for 0 < α < 1, as the number of samples in the

Monte Carlo approximation tends to infinity.

Proof. We extend the proof in Theorem 7.4.1. For simplicity, we again focus on the

n = 3 case.
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Base case: Given the set of three nodes with the desired failure probability α, the

base case MTPotentialBase is easily shown to satisfy Equation 7.4.2 with 100 %

probability ( > 1 − α). Similarly, each Monte Carlo prune satisfies Equation 7.4.2

with probability of 1− α asymptotically.

Inductive case: For a non-prunable set of three nodes {Pk}3
k=1 for the required

failure probability β. Note that MTPotentialCanonical results in a maximum

of four (i.e. 23−1 = 4) sub-calls for a set of non-prunable P1, P2, P3 nodes. For

example, suppose P1 is an internal node, and consider its left child, P1
L. The contri-

bution of P2 and P3 on P1
L can be computed by considering the node combinations:

(P1
L,P2

L,P3
L), (P1

L,P2
L,P3

R), (P1
L,P2

R,P3
L), (P1

L,P2
R,P3

R), resulting in a

maximum of four combinations if P1, P2, P3 satisfy the case 40(a) in Figure 40. Each

recursive sub-call is equivalent to a stratum in a stratified sampling, and satisfies the

following:∣∣∣Φ̃(xiu ;P2
L ×P3

L)− Φ(xiu ;P2
L ×P3

L)
∣∣∣ ≤ εTxiu×P2

L×P3
L

T root
Φl(P1

L) +
τTxiu×P2

L×P3
L

T root∣∣∣Φ̃(xiu ;P2
L ×P3

R)− Φ(xiu ;P2
L ×P3

R)
∣∣∣ ≤ εTxiu×P2

L×P3
R

T root
Φl(P1

L) +
τTxiu×P2

R×P3
L

T root∣∣∣Φ̃(xiu ;P2
R ×P3

L)− Φ(xiu ;P2
R ×P3

L)
∣∣∣ ≤ εTxiu×P2

R×P3
L

T root
Φl(P1

L) +
τTxiu×P2

R×P3
R

T root∣∣∣Φ̃(xiu ;P2
R ×P3

R)− Φ(xiu ;P2
R ×P3

R)
∣∣∣ ≤ εTxiu×P2

R×P3
R

T root
Φl(P1

L) +
τTxiu×P2

R×P3
R

T root

Collectively, the results from these strata add up to potential estimates that satisfy

the error bound with at least 1− α probability for each xiu ∈ P1
L and the following

holds: ∣∣∣Φ̃(xiu ;P2 ×P3)− Φ(xiu ;P2 ×P3)
∣∣∣ ≤ εTxiu×P2×P3

T root
Φl(xiu) +

τTxiu×P2×P3

T root

where Txiu×P2×P3 = Txiu×P2
L×P3

L + Txiu×P2
L×P3

R + Txiu×P2
R×P3

L + Txiu×P2
R×P3

R .

The similar bounds hold for each x ∈ P1
R, and the same reasoning can be extended

to the bounds for P2 and P3. Because Φl(P1) = min{Φl(P1
L),Φl(P1

R)} throughout

the execution of the algorithm, we can extend the argument to the case where P1 =

P2 = P3 = X.
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Figure 44: Building the kd-tree takes negligible amount of time compared to the
time it takes for the actual multibody computation.

7.5 Experiment Results

All of our algorithms were based on an open-source C++ library called MLPACK [24,

53]. The experiments were performed on a desktop with AMD Phenom II X6 1100T

Processors utilizing only one core with 8 GB of RAM.

7.5.1 Tree Building

The cost of tree-building is negligible compared to the actual multibody computation.

Compared to complex, irregular memory access patterns encountered in the multi-

body computation (as do most recursive algorithms in general), the tree-building

phase requires mostly sequential scanning of contiguous blocks of memory and thus

requires shorter amount of time. See Figure 44, where the tree building is compared

to the multibody computation with the relative error criterion ε = 0.1 and the 50 %

probability guarantee (α = 0.5). The annulus distribution was chosen deliberately

to show that even under the distribution for which the multibody computation is

relatively fast (see Section 7.5.2), the tree building requires a tiny fraction of time
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Figure 45: Speedup result on uniformly distributed points using the deterministic
algorithm (α = 0). The base timings for the naive algorithm on each point set are:
1.91×101 seconds, 1.54×102 seconds, 5.17×102 seconds, 1.23×103 seconds, 2.39×103

seconds, 4.16×103 seconds, 6.64×103 seconds, 9.76×103 seconds, 1.43×104 seconds,
and 1.92× 104 seconds.

compared to the computation time.

7.5.2 Multibody Computation

We demonstrate speedup results of our approximate algorithms guaranteeing the

(1 − α) probabilistic ε relative error criterion (Definition 2.4.3). For this paper, we

focus strictly on the relative error criterion (τ = 0) and test on three relative error

parameter values ( ε = 0.001, ε = 0.01, and ε = 0.1). We test on three different types

of distribution: uniform within the unit hypercube [0, 1]3 (denoted as the “uniform”

distribution), the annulus distribution (denoted as the “annulus” distribution) in

three dimensions, and uniform within the unit three-dimensional sphere (denoted as

the “ball” distribution). These three distributions were also used in [17]).

Deterministic Approximations. Figure 45, Figure 47, and Figure 46 show speedup

results against the naive algorithm using only the deterministic approximation (i.e.

α = 0). On the uniform distribution and the ball distribution, the speedup is almost
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Figure 46: Speedup result on points distributed inside a sphere using the deter-
ministic algorithm (α = 0). The base timings for the naive algorithms are listed in
Figure 45.

non-existent; the speedup factor is a little bit more than two on the dataset containing

10, 000 points using the lowest parameter setting of ε = 0.1. On the annulus distribu-

tion, our deterministic algorithm achieves a little bit better speedup against the naive

algorithm; a factor of more than 20 times speedup on 10, 000 points is encountered on

ε = 0.1. A tree-based hierarchical method generally works better for clustered point

sets, and this is reflected in our results.

Monte-Carlo Approximations. In this section, we show whether adding indeter-

minism by sampling can reduce the computation time while guaranteeing a slightly

relaxed error criterion (but with a high probability guarantee for each potential sum).

We first relax the probability guarantee to be 90% (i.e. α = 0.1). Like the results

shown using the deterministic algorithm, our Monte Carlo-based algorithm achieves

the most speedup on points distributed in an annulus (1000 times speedup on 10, 000

points using ε = 0.1).

We also list the percentage of the points actually achieving the ε relative error
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Figure 47: Speedup result on points distributed on an annulus using the deterministic
algorithm (α = 0). The base timings for the naive algorithms are listed in Figure 45.
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Figure 48: Speedup result on uniformly distributed points using the Monte Carlo-
based algorithm (α = 0.1). The base timings for the naive algorithms are listed in
Figure 45.
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Figure 49: Speedup result on points distributed inside a sphere using the Monte
Carlo-based algorithm (α = 0.1). The base timings for the naive algorithms are
listed in Figure 45.
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Figure 50: Speedup result on points distributed on an annulus using the Monte
Carlo-based algorithm (α = 0.1). The base timings for the naive algorithms are
listed in Figure 45.
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Table 10: The distribution of relative error on the uniform distribution using α = 0.1
and ε = 0.001.

Number of
points

% achieving Average
relative error

Variance
Maximum
relative error

1000 98.3% 1.11× 10−4 8.89× 10−7 2.86× 10−2

2000 97.9% 1.28× 10−4 7.71× 10−7 2.78× 10−2

3000 98.6% 1.51× 10−4 2.64× 10−6 6.47× 10−2

4000 98.3% 1.44× 10−4 3.37× 10−6 1.01× 10−1

5000 98.7% 2.65× 10−4 1.09× 10−4 7.36× 10−1

6000 98.3% 1.29× 10−4 1.39× 10−6 3.62× 10−2

7000 98.4% 1.86× 10−4 9.29× 10−6 1.96× 10−1

8000 98.8% 9.89× 10−5 1.21× 10−6 6.50× 10−2

9000 98.8% 9.94× 10−5 1.39× 10−6 6.69× 10−2

10000 98.9% 1.02× 10−4 1.95× 10−6 1.06× 10−1

bound along with the mean and the variance in Table 10, Table 11, and Table 12.

The relative error level of 0.001 and the probability guarantee of 90% was used.

Under all three distributions, the percentage of points whose potential sum achieved

the desired relative error of 0.001 was well above 90%. We list the average relative

error, the variance, and the maximum relative error. Note that the maximum relative

error can exceed 100% if the true potential sum and its approximation have opposite

signs. For a particle with a small potential sum, we have observed that this is indeed

the case due to numerical inaccuracies accumulated during the summation.

7.6 Conclusion

In this chapter, we have introduced the framework for extending the pairwise series

expansion to potentials that involve more than two points. Through this process,

we have formally defined the expansions needed for approximating the multibody

potentials in a hierarchical fashion as done in traditional FMM algorithms, and have

derived algorithms for guaranteeing (1) absolute error bound (2) relative error bound

(3) probabilistic absolute/relative error on each particle potential sum and proved the

correctness of our algorithms formally. Parallelization is left as a future work [118].
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Table 11: The distribution of relative error on the ball distribution using α = 0.1
and ε = 0.001.

Number of
points

% achieving Average
relative error

Variance
Maximum
relative error

1000 98.6% 8.21× 10−5 1.17× 10−7 7.22× 10−3

2000 98.7% 1.35× 10−4 1.26× 10−6 2.78× 10−2

3000 98.7% 1.11× 10−4 7.58× 10−7 3.23× 10−2

4000 97.0% 1.36× 10−3 1.21× 10−3 1.81× 100

5000 98.2% 1.19× 10−4 1.18× 10−6 4.85× 10−2

6000 98.9% 1.20× 10−4 3.70× 10−6 1.27× 10−1

7000 98.8% 1.22× 10−4 3.32× 10−6 1.11× 10−1

8000 98.5% 1.31× 10−4 3.67× 10−6 1.12× 10−1

9000 97.9% 6.24× 10−4 3.89× 10−4 1.14× 100

10000 97.6% 5.09× 10−4 2.40× 10−4 1.28× 100

Table 12: The distribution of relative error on the annulus distribution using α = 0.1
and ε = 0.001.

Number of
points

% achieving Average
relative error

Variance
Maximum
relative error

1000 98.4% 9.33× 10−5 3.42× 10−7 1.38× 10−2

2000 97.2% 9.21× 10−4 2.69× 10−4 5.15× 10−1

3000 98.7% 8.52× 10−5 1.16× 10−6 5.09× 10−2

4000 91.8% 2.53× 10−2 6.10× 10−1 4.80× 101

5000 96.9% 1.28× 10−3 1.09× 10−3 1.27× 100

6000 92.8% 6.28× 10−3 1.38× 10−2 6.43× 100

7000 95.2% 2.13× 10−3 1.36× 10−3 6.66× 10−4

8000 91.2% 1.45× 10−2 3.77× 10−1 5.36× 101

9000 94.6% 5.17× 10−3 6.56× 10−3 3.94× 100

10000 91.6% 2.72× 10−2 8.06× 10−1 8.29× 101
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CHAPTER VIII

BEYOND SERIAL IMPLEMENTATIONS: DISTRIBUTED

FAST SUMMATIONS

8.1 Issues in Parallelization

In this chapter, we propose a parallel framework for kernel summations extending the

serial approaches described in Chapter 3, Chapter 4, and Chapter 51. The framework

provides a general approach for accelerating the computation of many popular ma-

chine learning methods. The motivation is similar to that of [119] and [98]. In [119], a

general framework was developed to support various types of scientific simulations. In

the PEGASUS framework [98], several graph mining operations (PageRank, Random

Walk with Restart (RWR), diameter estimation, and connected components) was par-

allelized via an implementation of Generalized Iterated Matrix-Vector multiplication

(GIM-V) on HADOOP platform [21]. This chapter is based on parallelization of the

previously successful generalized N-body framework [78, 128] which is similar to the

well-known spatial join algorithms [64, 26] and is an extension of the parallelization

work in [25]. We again start by defining the computational task to be tackled.

Problem: Suppose we are given the set of query points Q and the set of reference

points R, and each of these sets are equi-distributed across a network of nodes. Given

a pairwise kernel function k, the relative error level ε > 0, and the desired kernel sum

Φ(q; R) =
∑
r∈R

k(q, r) for each q ∈ Q,

Task: Compute an approximation Φ̃(q; R) for each q ∈ Q such that∣∣∣Φ̃(q; R)− Φ(q; R)
∣∣∣ ≤ εΦ(q; R) as fast as possible.

1The extension to the multibody case is under progress in another submission.
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Table 13: Methods that can be sped up using our framework. Although the parts
marked with 5 can be sped up in some cases by sparsifying the kernel matrix and
applying Krylov-subspace methods, computed results are usually numerically unsta-
ble. An alternative approach based on distributed averaging and random feature
extraction will be introduced in Chapter 9.

Method k(·, ·) Train/Batch
test

KDE [145]/NWR [138] PDFs 4 / 4

KSVM [165]/GPR [153] PD kernels 5 / 4

KPCA [164] CPD kernels 5 / 4

We now start by defining the necessary terminologies.

• An MPI communicator connects a set of MPI processes, each of which is given

a unique identifier called an MPI rank, in an ordered topology

• Commonly used topologies include: the ring topology, the star topology, and

the hypercube topology. We denote Cworld as the MPI communicator over all

MPI processes, and DP the portion of the data D owned by the P -th process.

In this chapter, we assume that: 1) the nodes are connected using a hypercube

topology since it is the most commonly used one; 2) there are pthread threads associated

with each MPI process; 3) the number of MPI processes p is a power of two2, though

our approach can be easily extended for arbitrary positive integers p; 4) the query

set equals the reference set (Q = R, and we denote D as the common dataset and

N = |D| the size of the dataset), and D is equi-distributed across all MPI processes.

Particularly the monochromatic case of Q = R occurs often in cross-validating for

optimal parameters in many non-parametric methods.

Hierarchical N -body methods present an interesting challenge in parallelization:

1) both data distribution and work distribution are highly non-uniform across MPI

processes; 2) often involves long-range communication due to the kernel function

2We regret the potential overloading of notation here. p has been used in Chapter 3 and Chapter 4
as truncation orders.
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Table 14: Examples of approximation schemes that can be utilized in our framework.
Approximation Type Basis functions Applicability
Series expan-
sion [114, 112]

Deterministic Taylor basis General

Reduced set [165] Deterministic Pseudo-
particles

Low-rank PD/CPD
kernels

Monte Carlo [95, 113] Probabilistic None General smooth kernels
Random feature ex-
traction [150]

Probabilistic Fourier basis Low-rank PD/CPD
kernels

Table 15: Examples of multi-dimensional binary trees that can be utilized in our
framework. If Rule(x) returns true, then x is assigned to the left child (as defined
in [54]).

Tree type Bound type Rule(x)
kd-trees [15] hyper-rectangle

{bmin[d],bmax[d]}Dd=1

x[i] ≤ s[i] for 1 ≤ i ≤ D,
bmin[i] ≤ s[i] ≤ bmax[i]

metric trees [140] hyper-sphere B(c, r), c ∈
RD, r > 0

||x−pleft || < ||x−pright || for
pleft ,pright ∈ RD

vp-trees [202] B(c, r1) ∩ B(c, r2) for 0 ≤ r1 <
r2

||x − p|| < t for t > 0, p ∈
RD

RP-trees [54] Hyperplane aTx = b xTv ≤ Median(zTv : z ∈
S)

k(·, ·). In the worst case, every process will need almost every piece of data owned

by the other processes. Here we discuss the three main important issues in a scalable

distributed hierarchical N -body code:

Parallel Tree Building: [110] proposed a novel distributed octree construction

algorithm and a new reduction algorithm for evaluation to scale up to over 65K

cores. [3] describes a parallel kd-tree construction on a distributed memory setting,

while [39] works on a shared-memory setting. [120] discuss building spill-trees, a

variant of metric trees that permit overlapping of data between two branches, using

the MapReduce framework.

Load Balancing: Most common static load balancing algorithms include: 1) the

costzone [173] which partitions a pre-built query tree and assigns each query particle

to a zone. A common approach employs a graph partitioner [52]; 2) the ORB (or-

thogonal recursive bisection) which directly partitions each dimension of the space
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Figure 51: Recursive doubling on the hypercube topology. Initially, each node begins
with its own message (top left). The exchanges proceed in: the top right, the bottom
left, then bottom right in order. Note that the amount of data exchanged in each
stage doubles.

containing the query points in a cyclic fashion. Dynamic load balancing [123] strate-

gies adjust the imbalance between the work loads during the computation.

Interprocess Communication: The local essential trees approach [160] (which

involves few large-grained communication) is a sender-initiated communication ap-

proach. Using the ORB, each process sends out essential data that may be needed

by the other processes using the recursive doubling scheme (see Figure 51). An al-

ternative approach has the receiver initiate communication; this approach involves

many fine-grained communication and is preferable if interprocess communication

overheads are small. For more details, see [172].

8.2 Distributed Multidimensional Tree

Our approach for building a general-dimension distributed tree closely follows [3].

Following the ORB (orthogonal recursive bisection) in [160], we define the global tree,

which is a hierarchical decomposition of the data points on the process level. The

local tree of each process is built on its own local data DP .
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P0 P1 P2 P3

Figure 52: Each process owns the global tree of processes (the top part) and its own
local tree (the bottom part).

Building the Distributed Tree. Initially, all MPI processes in a common MPI

communicator agree on a rule for partitioning each of its data into two parts (see

Algorithm 8.2.1). The MPI communicator is then split in two depending on the

MPI process rank. This process is recursively repeated until there are log p levels

in the global tree. Shared-memory parallelism can be utilized in the (independent)

reduction step in each MPI process in generating the split rule (see Algorithm 8.3.2).

Using C++ meta-programming, we can auto-generate any binary tree utilizing an

associative reduction operator for constructing bounding primitives; one just needs

to provide a splitting rule (see Table 15). Generalizing to multidimensional trees with

an arbitrary number of child nodes (such as cover-trees [20]) is left as a future work.

Building the Local Tree. Here we closely follow the approach in [39]. The first

few levels of the tree are built in a breadth-first manner with the assigned number of

OpenMP threads proportional to the number of points participating in a reduction to

form the bounding primitive (see Figure 54). The number of participating OpenMP

threads per task halves as we descend each level. Each independent task with only

one assigned OpenMP thread proceeds with the construction in a depth-first manner.
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Figure 53: Distributed memory parallelism in building the global tree (the first log p
levels of the entire tree). Each solid arrow indicates a data exchange between two
given processes. After exchanges on each level, the MPI communicator is split (shown
as a dashed arrow) and the construction works in parallel subsequently.

We utilized the nested loop parallelization feature in OpenMP for this part. Recently,

we have transitioned to use Intel Thread Building Block for its simplicity in recursive

task-based parallelism.

Overall Runtime Complexity. All-reduce operation on the hypercube topology

takes O (ts log p+ twm(p− 1)) where ts, tw, and m are the latency constant, the

bandwidth constant, and the message size respectively. Assume that each process

starts with the same number of points N
p

and each split on a global/local level results

in equi-distribution of points and only distributed memory parallelism is used (i.e.

pthread = 1). Let mbound be the message size of the bounding primitive divided by D.

The overall runtime for each MPI process is:

• The reduction cost and the split cost at each level 0 ≤ i < log p: O
(

2N(D+tw)
p

)
• The all-reduce cost on each level 0 ≤ i < log p: O(twDmbound

(
p
2i
− 1
)
)

• The total latency cost at each level 0 ≤ i < log p: O
(
ts
(
log p

2i
+ 1
))

.
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Figure 54: Shared-memory parallelism in building the local tree for each MPI process.
The first top levels are built in a breadth-first manner with the number of threads
proportional to the amount of performed reduction. Any task with one assigned
thread proceeds in a depth-first manner.

• The base case at the level log p (the depth-first build of local tree): O
(
DN
p

log
(
N
p

))
Therefore, the overall complexity is: O

(
DN
p

log
(
N
p

))
+O (Dtwmbound (2p− log 4p))+

O
(

2N(D+tw)
p

log p
)

+O
(
ts
2

log p (log p+ 3)
)
. This implies that the growth of the num-

ber of data points must be N logN ∼ O(p2) to achieve the same level of parallel

efficiency. Note that the last terms have zero contribution if p = 1.

8.3 Overall Algorithm

Algorithm 8.3.1 shows the overall algorithm. Initially, each MPI process initializes

its distributed task queue by dividing its own local query subtree into a set of T

query grain subtrees where T > pthread is more than the number of threads pthread

running on each MPI process; initially each of these trees has no tasks. The tree

walker object maintains a stack of pairs of Qsub and RP
sub that must be considered.

It is first initialized with the following tuple: the root node of Q, the root node

of the local reference tree RP, and the probability guarantee α; the relative error

tolerance/absolute error tolerance are global constants ε and τ respectively. Threads

not involved with the tree walk or exchanging data can dequeue tasks from the local
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Algorithm 8.2.1 BuildDistTree(Cworld ,DP): (MPI)

C ← Cworld

while C.size() > 1 do
rule ← ChooseSplitRule(C,DP)
for each P -th MPI process in C in parallel do

Divide DP = LP ∪RP using rule.
if P < |C|

2
then

Pcomp ← P + |C|
2

, Send(Pcomp ,RP)
Lcomp ← Receive(Pcomp), Dp ← Lp ∪ Lcomp

else
Pcomp ← P − |C|

2
, Rcomp ← Receive(Pcomp)

Send(Pcomp ,LP), Dp ← Rp ∪Rcomp

C ← SplitComm(P >= |C|
2

)
BuildLocalTree(DP)

task queue.

8.3.1 Walking the Trees

Each MPI process takes the root node of the global query tree (the left tree) and the

root node of its local reference tree (the right tree) and performs a dual-tree recursion

(see Algorithm 8.3.3). For simplicity, we show the case where the reference side is

descended first then the query side. Any of the running threads can walk by dequeuing

from the stack of frontier nodes, generate local tasks, and queue up reference subtrees

to send to other processes. The expansion can be prioritized using the Heuristic

function that takes a pair of query/reference nodes. It would be possible to extend

the walking procedure to include fancier expansion patterns described in [156].

8.3.2 Message Passing

Inspired by the local essential trees approach, we develop a message passing sys-

tem utilizing the recursive doubling scheme. We assume that the master thread is

the only thread that may initiate MPI calls. The key differences from the vanilla

local essential tree approach are two-fold: 1) our framework can support compu-

tations that have dynamic work requirement, unlike FMM; 2) our framework does
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Algorithm 8.3.1 Overall algorithm.

Each MPI process initializes its distributed task queue with a set of query grain
subtrees and the tree walker with (Q,RP).
OpenMP parallel region start (threads spawned)
while there are remaining tasks globally do

if I am the master thread then
Route messages via recursive doubling.

if If the task queue is nearly empty then
Walk() (Algorithm 8.3.3,Figure56).

Choose a query subtree and lock it. Dequeue a set of task from it and call the
serial algorithm (Algorithm 3.1.10 on each (Qsub ,Rsub) pair. For each completed
task, queue up completed work quantity.

Unlock the query subtree. If the checked out query subtree is imported from
another process and has no more tasks, queue up a flush request to write back
the query subtree.

OpenMP parallel region end (threads synchronized)

Algorithm 8.3.2 ChooseSplitRule(C,DP): (OpenMP/IntelTBB)

blocal ← an empty bound
for each data point r ∈ DP in parallel do

Expand blocal to include r.
bcommon ← Combine(C,blocal)
return Rule(x) using bcommon .

not require each MPI process to accommodate all of the non-local data in its essen-

tial tree. Algorithm 8.3.4 shows the message passing routine called by the master

threshold on each MPI process. Any message from a pair of processes in a hyper-

cube topology needs at most log p rounds of routing. At each stage i, the process P

with binary representation P = (blog(p)−1, · · · , bi+1, 0, bi−1, · · · , b0)2 sends messages to

process Pneighbor = (blog(p)−1, · · · , bi+1, 1, bi−1, · · · , b0)2 (and vice versa). Here are the

types of messages exchanged between a pair of processes:

1. Reference subtrees: each MPI process sends out a reference subtree with the tag

(Rsub , {Qsub}) where {Qsub} is the list of remote query subtrees that needs Rsub .

2. Work-complete message: whenever each thread finishes computing a task (Qsub ,Rsub),
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Figure 55: The global query tree is divided into a set of query subtrees each of which
can queue up a set of reference subset to compute (shown vertically below each query
subtree). The kernel summations for each query subtree can proceed in parallel.

it queues up a pair of completed work quantity and the list of all MPI ranks excluding

the self. The form of the message is: (|Qsub||Rsub|, {0, · · · , P − 1, P + 1, p− 1})).

3. Extra tasks: one of the paired MPI processes can donate some of its tasks to

the other (Section 8.3.3). This has a form of (Qsub , {Rsub}) where {Rsub} is a list of

reference subsets that must be computed for Qsub .

4. Imported query subtree flushes: during load balancing, query subtrees with several

reference tasks may be imported from another process. These must be synchronized

with the original query subtree on its originating process before tasks associated with

it are dequeued.

5. The current load: the load is defined as the sum of |QsubRsub| associated with all
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Algorithm 8.3.3 Walk()

while there is a MPI process asking for work do
(Qsub ,Rsub)← Pop()
if CanSummarize(Qsub ,Rsub) then

Summarize(Qsub ,Rsub), Queue the work-complete message
(|Qsub||Rsub|, {1, · · · , P − 1, P + 1, · · · , p}).

else
if Qsub is a root node of a query grain subtree then

if Rsub is a leaf node then
if Qsub belongs to the self, then

Add (Qsub ,Rsub) to the task list of Qsub .
else

Add the MPI rank of Qsub to a list of Rsub ’s destinations.
else

(R1,R2)← Heuristic(Qsub ,Rsub,L,Rsub,R)
Push

(
Qsub ,R2

)
, Push

(
Qsub ,R1

)
else

if Rsub is a leaf node then
Push(Qsub,L,Rsub , ), Push(Qsub,R,Rsub)

else
(RL,1,RL,2)← Heuristic(Qsub,L,Rsub,L,Rsub,R)
(RR,1,RR,2)← Heuristic(Qsub,R,Rsub,L,Rsub,R)
Push

(
Qsub,R,RR,2

)
,Push

(
Qsub,L,RL,2

)
Push

(
Qsub,R,RR,1

)
,Push

(
Qsub,L,RL,1

)
query subtrees (both native and imported) on a given process.

Distributed Termination Detection. We follow a similar idea discussed in Sec-

tion 14.7.4 of [143], Initially, all MPI processes collectively have to complete |Q||R|

amount of work. Each thread dequeues a work and completes a portion of its as-

signed local work (see Figure 55); the completed work quantity is then broadcast

using the recursive doubling message passing to all the other processes. The com-

pleted and uncompleted work is conserved at any given point of time. When every

process thinks all of |Q||R| work have been completed and it has sent out all of its

queued up work-complete messages, it can safely terminate.

8.3.3 Load Balancing

Our framework employs both static load balancing and dynamic load balancing.
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Static Load Balancing. Each MPI task is initially in charge of computing the

kernel sums for all of its grain query subtrees. This approach is similar to the ORB

approach where the distributed tree determines the task distribution.

Dynamic Load Balancing. It is likely that the initial query subtree assignments

will cause imbalance among processes. During the computation, we allow each query

task to migrate from the current P -th process to a neighboring Pneighbor -th process.

We use a very simple scheme in which two processes that are paired up during each

stage of the repeated recursive doubling stages attempt to load balance. Each pro-

cess keeps sending out a snapshot of its computation load in the recursive doubling

scheme, and maintains a table of estimated remaining amount of computation on the

other processes. Therefore, load estimates could be outdated by the time a given

process considers transferring extra tasks. Therefore, we employ a simple heuristic of

initiating the load balance for a pair of imbalanced processes: if the estimated load

on the process Pneighbor is below 0 < βthreshold < 1 of the current load on the process

P , transfer 0.5(1− βthreshold) amount of tasks from P to Pneighbor .

8.4 Experimental Results

We developed our code base in C++ called MLPACK [24] and utilized open-source

libraries such as Boost library [107], Armadillo linear algebra library [163], and the

GNU Scientific Library [49]. We have tested on the Hopper cluster at NERSC. Each

node on the Hopper cluster has 24 cores, and we used the recommended setting

of 6 OpenMP threads/node (pthread = 6) and a maximum 4 MPI tasks/node and

compiled using GNU C++ compiler version 4.6.1 under the −O3 optimization flag.

The configuration details are available at [1].

We chose to evaluate the scalability of our framework in the context of com-

puting kernel density estimates [145]. We used the Epanechnikov kernel k(q, r) =

I
(

1− ||q−r||
2

h2

)
since it is the most asymptotically optimal kernel. For the first

166



0 1 2 3 0 1 2 3

4 5 6 7 8 9 10 11 4 5

12 13 14 15

Iteration  0

0 1 2 3 0 1 2 3

4 5 6 7 8 9 10 11 4 5

12 13 14 15

Iteration  1

0 1 2 3 0 1 2 3

4 5 6 7 8 9 10 11 4 5

12 13 14 15

Iteration  2

0 1 2 3 0 1 2 3

4 5 6 7 8 9 10 11 4 5

12 13 14 15

Iteration  3

0 1 2 3 0 1 2 3

4 5 6 7 8 9 10 11 4 5

12 13 14 15

Iteration  4

0 1 2 3 0 1 2 3

4 5 6 7 8 9 10 11 4 5

12 13 14 15

Iteration  5

0 1 2 3 0 1 2 3

4 5 6 7 8 9 10 11 4 5

12 13 14 15

Iteration  6

0 1 2 3 0 1 2 3

4 5 6 7 8 9 10 11 4 5

12 13 14 15

Iteration  7

0 1 2 3 0 1 2 3

4 5 6 7 8 9 10 11 4 5

12 13 14 15

Iteration  8

0 1 2 3 0 1 2 3

4 5 6 7 8 9 10 11 4 5

12 13 14 15

Iteration  9

Figure 56: Illustration of the tree walk performed by the 0-th MPI process in a group
of 4 MPI processes. Iteration 0: starting with the global query tree root and the root
node of the local reference tree owned by the 0-th MPI process; Iteration 1-2: descend
the reference side before expanding the query side; Iteration 3: the reference subtree
12 is pruned for the 0-th and 1st MPI processes; Iteration 6-7: the reference subtree
12 is hashed to the list of subtrees to be considered for the query subtrees 8 and 9
(owned by the 2nd MPI process); Iteration 8: the reference subtree 12 is pruned for
the 3rd MPI process. Iteration 9: the reference subtree 13 is considered subsequently
after the reference subtree 12. At this point, the hashed reference subtree list includes
(12, {8, 9}).
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Algorithm 8.3.4 RouteMessage
Pneighbor ← P XOR stage.
Asynchronously send to Pneighbor :

1. A set of query subtree flushes

2. A set of query subtrees with tasks

3. The work-complete messages

4. The recently received load estimates of other processes.

From Pneighbor , receive:

1. A set of query subtree flushes from Pneighbor . Synchronize those that belong
to P .

2. Query subtrees with tasks from Pneighbor and have the local task queue import
them.

3. Load estimates of other processes from Pneighbor .

4. Work complete messages from Pneighbor and update the global work count.

Wait until all sends are complete.
stage ← (stage + 1) mod log p

part of our experiments, we considered uniformly distributed data points in the

10-dimensional hypercube [0, 1]10 since non-parametric methods such as KDE and

NWR require an exorbitant number of samples in the uniform distribution case. Ap-

plying non-parametric methods for higher dimensional datasets requires exploiting

correlations between dimensions [142]. For the second part, we measured the strong

scalability of our implementation on the SDSS dataset. All timings are maximum

ones across all processes.

8.4.1 Scalability of Distributed Tree Building

We have compared the strong scalability of building two main tree structures: kd-

trees and metric-trees on an uniformly distributed 10-dimensional dataset containing

20,029,440 points (Figure 57). In all cases, building a metric-tree is more expen-

sive than building a kd-tree; a reduction operation in Algorithm 8.3.2 for metric-trees
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Figure 57: Strong scaling result for distributed tree building on an uniform point
distribution in the 10-dimensional unit hypercube [0, 1]10. The dataset has 20,029,440
points. The base timings for 6 cores are 105 seconds and 52.9 seconds for metric-tree
and kd-tree respectively. The raw timings for all pairs are (in seconds): (104.86,
52.93), (43.48, 27.03), (24.92, 13.13), (8, 4.9), (7.8, 3.22), (6.5, 1.69).

involves distance computations whereas the reduction operator for kd-trees is the com-

putation of minimum/maximum. For the weak-scaling result (shown in Figure 58),

we added 166,912 ten-dimensional data points per core up to 1,025,507,328 points.

Our analysis in Section 8.2 has shown that the exact distributed tree building al-

gorithm require the growth of the data points to be N logN ∼ O(p2), and this is

reflected in our experimental results.

However, readers should note that: 1) the depth of the trees built in our setting

is much deeper than the ones in other papers [110]. Each leaf in our tree contains 40

points; 2) the tree building is empirically fast. On 6,144 cores, we were able to build

a kd-tree on over one billion 10-dimensional data points under 30 seconds; 3) the

one-time cost of building the distributed tree can be amortized over many queries.

[120] took a simple map-reduce approach in building a multidimensional binary

tree (hybrid spill-trees specifically). We conjecture that this approach may be faster

to build but result in slower query times due to generating suboptimal partitions.

Future experiments will reveal its strengths and the weaknesses.
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Figure 58: Weak scaling result for distributed kd-tree building on an uniform point
distribution in 10 dimensions. We used 166,912 points / core. The base timing for 6
cores is 2.81 seconds.

8.4.2 Scalability of Kernel Summation

In this experiment, we measure the scalability of the overall kernel summation. Our

algorithm has three main parts: building the distributed tree (Algorithm 8.2.1), walk-

ing the tree to generate the tasks (Algorithm 8.3.3,Figure 56), and performing reduc-

tions on the generated tasks (Figure 55). The kernel summation algorithm tested

here employs only the deterministic approximations [114, 112]. We used ε = 0.1,

τ = 0, and α = 1 (see Definition 2.4.3).

Weak Scaling. We measured the weak scalability of all phases of computation (the

distributed tree building, the tree walk, and the computation). The data distribution

we consider is a set of uniformly distributed 10-dimensional points. We vary the

number of cores from 96 to 6144, adding 166,912 points per core. We used ε = 0.1 and

decreased the bandwidth parameter h as more cores are added to keep the number

of distance computations constant per core; a similar experiment setup was used

in [162], though we plan to perform more thorough evaluations. The timings for the

computation maintains around 60 % parallel efficiency above 96 cores.

Strong Scaling. Figure 60 presents strong scaling results on a 10 million/4-dimensional

subset of the SDSS dataset. We used the Epanechnikov kernel with h = 0.000030518
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Figure 59: Weak scaling result for overall kernel summation computation on an
uniform point distribution in 10 dimensions. We used 166,912 points / core and
ε = 0.1 and h = 1

1024
, halving h for every 4-fold increase in the number of cores. The

base-timings for 6 cores are: 2.84 seconds for tree building, 1.8 seconds for the tree
walk, and 128 seconds for the computation. The raw timings for all triples are (in
seconds): (2.84, 1.8, 128), (5.06, 2.03, 150), (8.36, 2.81, 218), (12.3, 2.97, 353), (18.2,
2.9, 407), (29.9, 2.7, 258).

(chosen by the plug-in rule) with ε = 0.1.

8.5 Conclusion

In this paper, we proposed a hybrid MPI/OpenMP kernel summation framework for

scaling many popular data analysis methods. Our approach has advantages including:

1) the platform-independent C++ code base that utilize standard protocols such as

MPI and OpenMP; 2) the template code structure that uses any multidimensional bi-

nary trees and any approximation schemes that may be suitable for high-dimensional

problems; 3) extendibility to a large class of problems that require fast evaluations of

kernel sums. Our future work will address: 1) distributed computation on unreliable

network connections; 2) extending to take advantage of heterogeneous architectures

including GPGPUs for a hybrid MPI/OpenMP/CUDA framework; 3) extension of

the parallel engine to handle problems with more than pair-wise interactions, such as

the computation of n-point correlation functions [78, 132].
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Figure 60: Strong scaling result for overall kernel summation computation on the
10 million subset of SDSS Data Release 6. The base timings for 24 cores are: 13.5
seconds, 340 seconds, 2370 seconds for tree building, tree walk, and computation
respectively. The raw timings for all triples are (in seconds): (13.52, 339.36, 2371),
(7.41, 24.38, 244), (2.93, 2.78, 98.78), (1.10, 0.27, 39.51).
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CHAPTER IX

DISTRIBUTED AVERAGING AND RANDOM

FEATURES FOR LARGE SCALE ANALYSIS

In this chapter, we discuss how to combine the distributed averaging algorithm with

the random feature extraction method (see Section 2.3.4) for fast distributed (parallel)

kernel eigendecomposition and inversion.

We assume there are a set of processes in a network G = (V , E), where V =

{1, · · · , N} represents the nodes. and E ⊂ V × V represents the pairs (i, j) ∈ E that

can communicate directly. The set of neighbors of node i is denoted as Ni = {j ∈ V :

(i, j) ∈ E} and its degree as di = |Ni|.

9.1 Distributed Averaging

We first start by introducing the distributed averaging algorithm. We assume each

node has a measurement ui ∈ R and needs to compute the global average ū = 1
N

N∑
i=1

ui.

The easiest way is to invoke a global communication primitive such as all-reduce MPI

operation. However, this requires a formation of a spanning tree where a single

process acts as the master. Each invocation requires all processes to synchronize

and can cause bottlenecks in scalability. In addition, all-reduce operation can be

useless in the cases of imperfect communication and dynamic network topologies.

Distributed averaging can be used to circumvent this process at the expense of taking

more number of iterations to converge to the true global average.

[199] considers the problem of finding a linear iteration yielding distributed aver-

aging consensus over a network. In this chapter, we use a simple linear iteration called

average consensus algorithm. Each process maintains an average xi initialized with
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Figure 61: A set of interconnected processes where each connection represents the
capability to communicate. Each synchronization phase requires each process to
exchange with its immediate neighbors. The convergence is guaranteed as long as the
network is a connected graph.

its own local number xi(0) = ui. Each process then iterates the difference equation

by using the difference equation:

xi(t+ 1) = xi(t) + ε
∑
j∈Ni

(xj(t)− xi(t)) (9.1.1)

where ε < 1
max

1≤i≤N
di

. Note that there are non-linear variants of difference equa-

tions [102]. Extensions to multivariate data and multiple data point cases are triv-

ial [188].

It can be shown that each state converges to the average of the initial values on

all nodes, that is lim
t←∞

xi = ū, as long as the graph G is connected. The all-reduce MPI

operation can be thought of as a special case of distributed averaging where every

process is in a fully connected network and communicated with the other processes

in each synchronization phase. On the other hand, distributed averaging requires

a smaller volume of communication and localized synchronization points. We note

that [188] applied the distributed averaging for developing distributed computer vision

algorithm such as point triangulation, linear pose estimation and affine structure from

motion; the distributed linear algebra algorithms such as SVD, nullspace estimation,

linear least squares, PCA, and generalized PCA are used as building blocks.
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9.2 Kernel Matrix Inversion

Now we tackle the problem of inverting a large kernel matrix K = {k(ri, rj)}ri,rj∈R

(see Figure 5), that is, the computation of K−1y. We note that [189] has already

applied distributed averaging for this case and briefly summarize their derivations.

We then propose to make a small change in their algorithm by introducing random

feature extraction.

9.2.1 Gaussian Process Regression

We assume the following regression model ŷ = f(x) + ε where ε ∼ N (0, σ2). We

briefly introduce the Gaussian process regression model, where f(x) is a zero-mean

Gaussian process with covariance function K(x,x′′) : RD × RD → R. A Gaussian

process is a collection of random variables, any finite number of which have a joint

Gaussian distribution [153]. It is completely specified by a mean function m(x) =

E[f(x)] (typically assumed to be zero) and a covariance functionK(x,x′′) = E[(f(x)−

m(x))(f(x′′)−m(x′′))] = E[f(x)f(x′′)].

If we have training data D =

x1, · · · , xN

y1, · · · , yN

, the N × N covariance matrix

K is now defined as [K]jk = K(xj,xk). We then define the observation vector y =

[y1, . . . , yN ]T ; y can be shown as a zero mean multivariate Gaussian process with a

covariance matrix K∗ = K+σ2I. The posterior density for a test point x∗, p(y∗|x∗,D)

is a univariate normal distribution with the mean ȳ∗ and the variance var(y∗):

ȳ∗ = k(x∗)T (K∗)−1y

var(y∗) = K(x∗,x∗)− k(x∗)T (K∗)−1k(x∗)

where k(x∗) = [k(x∗,x1), . . . , k(x∗,xn)]T . We focus on Gaussian Automatic Rele-

vance Determination (ARD) kernel as the covariance function:

k(x,x′) = σ2
f exp

[
−1

2
(x− x′)Tdiag

(
1

θ2
1

,
1

θ2
2

, · · · , 1

θ2
D

)
(x− x′)

]
(9.2.1)
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For simplicity, we further restrict to the case of the Gaussian kernel (h = θ1 = · · · =

θD, σf = 1). Nevertheless, we note that our discussions can be trivially extended

to the Gaussian ARD kernel and more importantly all positive-definite kernels with

well-defined inverse Fourier transforms.

A common choice of recovering f is to minimize the following cost function:

Q(f) =
N∑
i=1

(yi − f(xi))
2 + γ||f ||2HK (9.2.2)

where HK is the hypothesis space corresponding to a reproducing kernel Hilbert

space (RKHS) defined by the kernel k(·, ·). γ is the regularization parameter trading

empirical evidence and smoothness of f . It can be shown that fc = arg min
f∈HK

Q(f)

satisfies the following properties:

fc =
N∑
i=1

cik(xi, ·),


c1

...

cN

 = (K + γI)−1


y1

...

yN


Now we formally define the computational problem.

Problem: Given the set of reference point and target pairs D =

x1, · · · , xN

y1, · · · , yN

,

the positive definite kernel k, and the regularization parameter γ > 0,

Task: Compute


c1

...

cN

 = (K + γI)−1


y1

...

yN

 as fast as possible.

9.2.2 Applying Distributed Averaging

[189] restricts the hypothesis space to a closed subspace H̆K ⊂ H by using the

eigenexpansion of the kernel k. An eigenfunction φ(·) : RD ← R obeys the following

integral equation with respect to measure µ:∫
k(x,x′)φ(x)∂µ(x) = λφ(x′) (9.2.3)
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Generally, there are an infinite number of eigenfunctions, φ1(x), φ2(x), . . ., and corre-

sponding eigenvalues λ1 ≥ λ2 ≥ . . .. Eigenfunctions are orthogonal with respect to µ

and normalized such that
∫
φi(x)φj(x)∂µ(x) = δij where δij is the Kronecker delta.

By Mercer’s theorem, we can expand:

k(x,x′) =
∞∑
i=1

λiφi(x)φ∗i (x
′) (9.2.4)

[189] then truncates Equation (9.2.4) after d terms. The new restricted hypothesis

subspace precisely is the following:

H̆K = span{φ1, · · · , φd} (9.2.5)

For each point x in the query/reference datasets, a set of new features is generated

using the first d eigenfunctions: [φ1(x), · · · , φd(x)]. Now we instead get the following

function:

f̂S = arg min
f∈H̆K

N∑
i=1

(yi − f(xi))
2 + γ||f ||2HK (9.2.6)

See Proposition 5 in [189] for the goodness of the estimator f̂S.

We note that Gaussian process regression is an infinite-dimensional kernelized

ridge regression (Chapter 2 in [153]). In essence, we use the eigenfunctions to gener-

ate a low-dimensional (finite) subspace so that linear methods can be applied [150].

Therefore, we can write f̂S in the following way:

f̂S(x) = g(x)T
(

GGT + diag

(
γ

λ1

, · · · , γ
λd

))−1

s (9.2.7)

where g(x) =

[
φ1(x) · · · φd(x)

]T
, G =

[
g(x1) · · · g(xN)

]
, and s =

N∑
i=1

g(xi)yi.

Now note that 1
N

GGT = 1
N

N∑
i=1

g(xi)g(xi)
T and 1

N
s = 1

N

N∑
i=1

g(xi)yi are global averages

and distributed averaging can be applied.

Instead of using the eigenfunctions φ1, · · · , φd, we can also expand the kernel

using its inverse Fourier transform (Equation (2.3.2)) and randomly sample ξω(x) =
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[
cos(ωTx), sin(ωTx)

]T
such that k(x,x′) ≈ 1

d

d∑
i=1

ξωi(x)Tξωi(x
′). Now we can re-write

Equation (9.2.7):

f̂R(x) = ξ(x)T
(
ΞΞT + γI

)−1
sΞ (9.2.8)

where ξ(x) = 1√
d

[
ξω1(x)T · · · ξωd(x)T

]T
, Ξ =

[
ξ(x1) · · · ξ(xN)

]
, and sΞ =

N∑
i=1

ξ(xi)yi. f̂R is a solution in another hypothesis subspace:

H̃K = span{ξω1 , · · · , ξωd} (9.2.9)

Compared to the eigenexpansion case, we can no longer reduce the cost of each

communication between a pair of processes to O(d); this was possible due to the

orthogonality of eigenfunctions and the replacement of the covariance term 1
N

GGT

with its expected value Eµ
[
GGT

]
= I, i.e. the identity matrix (see Section 4.2

of [189]).

9.3 Kernel Eigendecomposition

9.3.1 Kernel PCA

We briefly introduce one of the widely used feature extraction method called ker-

nel PCA [164] in this section1. Many dimensionality reduction methods such as

FastMap [63], IsoMap [186], Local Linear Embedding [157], Local Tangent Space

Alignment [208], Multidimensional scaling [108], Laplacian eigenmaps [13] can be

cast as a special case of Kernel PCA [91, 196, 165, 14].

The kernel in the context of kernel PCA (and other kernel methods [165]) uses

k(·, ·) as a way of expressing dot products in the feature space F , that is k(x,y) =

Φ(x)TΦ(y) for Φ : RD → F . Kernel PCA is used for extracting principal components

in F rather than the original input space RD for discovering latent structures in the

data.

1This is an unfortunate overloading of terms which may cause confusion. Any suitable probability
density function can be used as a kernel in non-parametric density estimation, whereas kernels in
kernel PCA have different requirements.
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We denote the empirical average of the feature map as µR = 1
|R|
∑

rj∈R

Φ(rj). We

define the covariance matrix in F, C̄ = 1
|R|
∑

ri∈R

(Φ(ri)− µR) (Φ(ri)− µR)T . The

principal components of Φ(R) = {Φ(rj)}rj∈R are given by the eigenvectors of C̄.

The vanilla PCA corresponds to the case of Φ(x) = x. Because Φ(·) : RD → F could

be an infinite-dimensional mapping (i.e. Φ(·) induced by the Gaussian kernel), we

instead eigendecompose the centered kernel matrix: K̄ = VΣ2V T , where

K̄i,j = (Φ(ri)− µR)T (Φ(rj)− µR)

= k(ri, rj)−Φ(ri)
TµR −Φ(rj)

TµR + µTRµR

and for any x ∈ RD, Φ(x)TµR = 1
R

∑
ri∈R

k(x, ri) and µTRµR = 1
|R|2

∑
rm,rp∈R

k(rm, rp).

The overall computation problem here is defined as the following.

Problem: Given the set of reference point and target pairs R =

[
x1, · · · , xN

]
,

the positive definite kernel k,

Task: Compute the top m eigenvectors/eigenvalues of the kernel matrix K̄ as fast

as possible.

9.3.2 Previous Approaches

Now we go back to the problem of eigendecomposing a large kernel matrix K (see

Figure 4). A common operation in data analysis is an eigendecomposition of the

kernel matrix K = {k(ri, rj)}ri,rj∈R. Here we discuss previous approaches for eigen-

decomposing large kernel matrices in data analysis. A naive method requires O(|R|2)

storage and O(|R|3) computational cost.

Deterministic Approximations. [66] pointed out that the incomplete Cholesky

factorization to compute a low rank approximation K̃ = GGT such that K̃ ' K.

However, this method is not matrix-free since it works on the precomputed K. [178]

proposes a distributed algorithm for spectral clustering which involves an eigende-

composition of the Laplacian of K. It distributes the rows of sparsified K equally
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among p MPI processes and employs a parallel eigensolver.

Probabilistic Approximations. [195] uses the Nystrom method to reduce the

cubic computational cost by carrying out an eigendecomposition on a smaller kernel

matrix formed from the random subset of R. The original eigendecomposition prob-

lem is recovered by the Nystrom extension formula. A similar idea is used in [61],

which instead uses a probabilistic row or column sampling of the precomputed K.

[2] proposes to replace K with its randomized variant using random projections

and randomized rounding. This is motivated by the fact that classical linear algebra

approaches such as orthogonal/Lanczos iterations (which are sometimes used to com-

pute KPCA) have a huge computational bottleneck in matrix-matrix product that

occurs inside each iteration. Randomized rounding sparsifies K, which helps accel-

erate the matrix-matrix product inside orthogonal/Lanczos iteration, while random

projection reduces the dimensionality of each point (classical Johnson-Lindenstrauss

lemma states that there exists a lower dimensional embedding that preserves the pair-

wise distance with very small error), meaning the pairwise distances are computed

much faster.

[62] proposes a distributed algorithm of [2]. Each process receives a randomly

sparsified version of K and computes its own eigenvectors, and the master process

gathers and averages them. However, the authors assume that K is stored on the

master process.

9.3.3 Distributed Averaging-based Approach

Following the derivations in [189] and Section 9.2.2, we can develop a distributed

averaging scheme for large-scale kernel PCA. Note that we need to compute K ≈

UΣ2UT where U ∈ RN×r, Σ ∈ Rr×r, and r is the desired rank. Algorithm 9.3.1 shows

the serial version of the random-feature-based (non-centered) kernel PCA algorithm.
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Algorithm 9.3.1 Random feature-based (non-centered) kernel PCA algorithm
( 1
N

K = UΣ2UT ).

Compute the random projection of the dataset Ξ =
[
ξ(x1) · · · ξ(xN)

]
Compute the covariance matrix C = 1

N
ΞΞT .

Eigendecompose C = 1
N

VΣ2VT .
Compute U = GTVΣ−1.

Parallel Eigendecomposition. Note that the covariance C = 1
N

ΞΞT =
N∑
i=1

ξ(xi)ξ(xi)
T

is a global average. If Ξ =

[
Ξ1 · · · Ξp

]
are distributed on multiple processes

(where P -th process owns the block matrix ΞP ), then we can simply compute lo-

cal covariances (which are averages) and apply the distributed averaging algorithm.

Once each process has its own local estimate of the covariance CP,local after a num-

ber of iterations of distributed averaging, it can compute the eigendecomposition

of CP,local = 1
N

VP,localΣ
2
P,localV

T
P,local.

2 Note that U =


U1

...

Up

 = ΞTVΣ−1 where

UP ∈ RNP×r is the eigenvector components owned by the P -th process and NP is the

number of reference points owned by the P -th process. Each P -th process can now

compute its own eigenvector components: UP,local = ΞT
PVP,localΣ

−1
P,local.

KPCA Predictions. Given the n-th eigenvector of K̄, αn ∈ R|R|, the n-th eigen-

vector of C̄ is Vn =
∑

ri∈R

αn[i] (Φ(ri)− µR). The n-th kernel principal component of

a given test point q is:

(KPC)n(q)

= (Φ(q)− µR)T Vn

=
∑
ri∈R

αn[i] (Φ(q)− µR)T (Φ(ri)− µR)

=
∑
ri∈R

αn[i]
(
k(q, ri)−Φ(ri)

TµR −Φ(q)TµR + µTRµR

)
(9.3.1)

For a test point q ∈ Q, computing the n-th kernel principal components requires:

2It is possible to adapt this to the case where N is not known or hard to find.
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• The weighted kernel sum,
∑

ri∈R

αn[i]k(q, ri).

• The average kernel value for q, Φ(q)TµR.

• The dot product between αn and the vector of average kernel values

[Φ(r1)TµR, · · · ,Φ(r|R|)
TµR]T .

• The average kernel value among the training set µTRµR.

Note that the vector of average kernel values for the test set [Φ(q1)TµR, · · · ,Φ(q|Q|)
TµR]

and for the training set [Φ(r1)TµR, · · · ,Φ(r|R|)
TµR] and the average kernel value

µTRµR can be computed once. The computational cost of KPCA projection for a

set of test points Q is naively O(D(|Q||R|+ |R|2)). All of the above operations can

accelerated using the techniques illustrated in Chapter 3, Chapter 4, Chapter 5, and

Chapter 8.

9.4 Experiments

In this section, we focus on the two items that have not been addressed in Table 13 of

Chapter 8. As mentioned earlier, we restrict ourselves to the case of positive definite

kernels with well-defined inverse Fourier transforms so that the random feature ex-

traction can be applied. Threads were used to parallelize 1) the random feature-based

projection step; 2) the computation of required local averages.

9.4.1 Kernel Matrix Inversion: Gaussian Process Regression

Here we test on the 4-dimensional subset of the SDSS (Sloan Digital Sky Survey)

Dataset Release 6 containing 39,761,242 points as our training set, a larger dataset

than the one used in Chapter 8; we took the first three dimensions for predicting

the last dimension and scaled the first three dimensions to fit in the unit hypercube

[0, 1]3. We ran our experiments on the Hopper cluster utilizing 384 cores (16 nodes,

24 cores/node, 4 MPI processes/node, 6 threads/MPI process). We produced the test
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Figure 62: The plot of the minimum, lower quartile, mean, median, upper quartile,
and maximum relative errors among the predicted query regression estimates in each
iteration across all MPI processes.

set of the same size as the training set by adding Gaussian noises to the training set.

We measure the relative error deviation between the predicted centralized estimates

provided by the random features and the predicted localized estimated provided by

the distributed averaged random features across all MPI processes (see Figure 62).

We used the Gaussian kernel with the bandwidth that maximizes the marginal loglike-

lihood on a randomly chosen 10,000 reference points. In each iteration of distributed

averaging we used, each process P communicates at most log2 p neighbors in the

hypercube network topology.

9.4.2 Kernel Matrix Eigendecomposition: Kernel PCA

Here we test on the MNIST dataset [111] containing 60,000 points. Each point rep-

resents a 28× 28 image (784 dimensions). We measure the scalability of distributed

averaging-based approach stopping after the first 10 iterations. This experiment was
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performed on the Lincoln cluster (retired and replaced by the Forge cluster as of Au-

gust 15, 2011) at XSEDE; the Lincoln Cluster consisted of 192 compute nodes and 96

NVIDIA Tesla units (which we do not utilize in this section). Given the 60,000 points,

we generated a larger dataset by perturbing the original dataset by adding Gaussian

noises. We test on the four different configurations: flat MPI, 2 threads/MPI process,

4 threads/MPI process, and 8 threads/MPI process. Figure 63 shows the scalability

results.

9.5 Conclusion

In this chapter, we explored a way of combining the random feature extraction method

with the distributed averaging framework to scale the training phases of two kernel

methods: Gaussian process regression and kernel PCA. For Gaussian process regres-

sion, the problem of inverting the kernel matrix can be reduced to the problem of

computing the ridge regression solution of the random-feature linearized problem.

For kernel PCA, the problem of eigendecomposing the kernel matrix can be reduced

to the problem of computing the eigendecomposition of a smaller covariance matrix

in the random feature space. If the communication is imperfect or slow, then the

distributed averaging framework can be used to let each process exchange informa-

tion locally. This provides the following advantages: 1) any-time estimate based on

the local averages held by the given process; 2) the convergence guarantee to the

centralized estimates; 3) the adaptability to the changes in the network topology.
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CHAPTER X

CONCLUSION

In this thesis, we have explored various techniques for accelerating the computation

of three fundamental linear algebraic operations ubiquitous in machine learning and

scientific simulations. I claim there are three fundamental linear algebraic operations

ubiquitous in many data mining and scientific algorithms:

1. Kernel summations: ∀x1 ∈ X1,
∑

x2∈X2

k(x1,x2)

2. Solving a linear system involving a kernel matrix: K−1y

3. Eigendecomposing matrices: K = UΣUT

The spectrum of the contributions of this thesis for tackling these problems can be

attributed to various fields including:

1. Computational geometry: subspace tree (Chapter 5).

2. Computational physics: the first hierarchical fast Gauss transform (Chapter 3),

a hierarchical fast Gauss transform with a different Cartesian expansion (Chap-

ter 4), and its higher-order extension called multibody multipole method (Chap-

ter 7).

3. High performance computing: parallel multidimensional tree building and han-

dling the distributed data case (Chapter 8).

4. Distributed optimization: distributed averaging for fast kernel matrix inversion

and kernel matrix eigendecomposition (Chapter 9).
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Despite spanning these fields, this thesis demonstrates that many of these ideas are

similar in nature and can be unified under a single purpose of accelerating the com-

putation of kernel sums.

Future work include:

• Parallelization of Multidimensional Tree Construction using GPGPU

Parallelism: Recent literature have focused on building the tree entirely on

GPUs [209]. [27] is a recent work that builds the octree and runs the entire

kernel summations within GPUs.

• Incremental Update of Multidimensional Trees in Response to Chang-

ing Data Distribution: Previous work includes [135] for kd-trees and [55] for

random projection trees.

• Investigation of Practical Data Structures for Statistical and Simula-

tion Methods: This work started during my years of undergraduate research

for investigating practical data structures for the nearest-neighbor problem. A

preliminary report [81] detailing empirical comparison of over forty different

structures has been written. This study, however, was under the setting of

single-core machines. I plan to do more thorough comparisons on heteroge-

neous/multicore architectures.

• Distributed Optimization: Alternating Direction Method of Multipliers [23]

is gaining attention in the machine learning community.

• Graphical Model Inference and Efficient Implementations: Kernel meth-

ods and graphical models constitute major parts in machine learning and data

analysis. Whereas kernel methods model relationship between pairs of observa-

tions, graphical models can model relationship (i.e. conditional independence)

among the attributes describing each multivariate observation. I plan to explore
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relationship between graphical model inference methods and kernel methods to

develop richer models. Because richer models come at the expense of requiring

more computational time, I plan to delve into (1) parallelization/decomposition

techniques for large-scale inference learning [131, 125] and (2) applying acceler-

ation techniques for kernel methods developed in this thesis. In particular, [177]

has applied random feature techniques for kernel methods in the context of ac-

celerating a kernelized form of belief propagation, a fundamental operation in

graphical model inference.

• Large-Scale Real-Time Application: Acceleration techniques investigated

in my thesis have the potential to make real-time applications feasible, such as

surveillance applications [103]. In [103], we have developed a new representation

for matching motion trajectories using Gaussian process regression. Making this

system feasible in a real application requires (1) an effective way of handling

streaming data; (2) an efficient way of updating each representative model. I am

planning to explore a GPGPU-based acceleration using the CUDA programming

framework.

Publications that comprise and support this thesis include the following:

• Dongryeol Lee, Alexander G. Gray, and Andrew W. Moore. Dual-Tree Fast

Gauss Transforms. In: Advances in Neural Information Processing Systems,

2005.

• Dongryeol Lee and Alexander G. Gray. Faster Gaussian Summation: Theory

and Experiment. In: Proceedings of the Twenty-Second Conference on Uncer-

tainty in Artificial Intelligence, 2006.

• Ping Wang, Dongryeol Lee, Alexander G. Gray, and James M. Rehg. Fast Mean

Shift with Accurate and Stable Convergence. In: Proceedings of the Eleventh

International Conference on Artificial Intelligence and Statistics, 2007.
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• Dongryeol Lee and Alexander G. Gray. Fast High-dimensional Kernel Sum-

mations Using the Monte Carlo Multipole Method, In: Advances in Neural

Information Processing Systems, 2008.

• Dongryeol Lee, Alexander G. Gray, and Andrew W. Moore. Dual-Tree Fast

Gauss Transforms (arXiv).

• Parikshit Ram, Dongryeol Lee, Hua Ouyang, and Alexander G. Gray. Rank-

Approximate Nearest Neighbor Search: Retaining Meaning and Speed in High

Dimensions. In: Advances in Neural Information Processing Systems, 2009.

• Parikshit Ram, Dongryeol Lee, William B. March, and Alexander G. Gray.

Linear-time Algorithms for Pairwise Statistical Problems. In: Advances in

Neural Information Processing Systems, 2009. Spotlight Presentation.

• Dongryeol Lee, Arkadas Ozakin, and Alexander G. Gray. Multibody Multipole

Methods. Under submission to Journal of Computational Physics, 2011.

• Kihwan Kim, Dongryeol Lee, and Irfan Essa. Gaussian Process Regression Flow

for Analysis of Motion Trajectories. In: Proceedings of IEEE International

Conference on Computer Vision, 2011.

• William B. March, Arkadas Ozakin, Dongryeol Lee, Ryan Riegel, and Alexander

G. Gray. Multi-Tree Algorithms for Large-Scale Astrostatistics. In Advances in

Machine Learning and Data Mining for Astronomy, Chapman and Hall/CRC

Press, 2012.

• Dongryeol Lee, Richard Vuduc, and Alexander G. Gray. A Distributed Kernel

Summation Framework for General-Dimension Machine Learning. To appear in

SIAM International Conference on Data Mining, 2012. Best Paper Award.
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• Parikshit Ram, Dongryeol Lee, and Alexander G. Gray. Nearest-Neighbor

Search on a Time Budget via Max-Margin Trees. To appear in SIAM Interna-

tional Conference on Data Mining, 2012.

• Kihwan Kim, Dongryeol Lee, and Irfan Essa. Detecting Regions of Interest

in Dynamic Scenes for Camera Motion. To appear in IEEE Conference on

Computer Vision and Pattern Recognition, 2012.
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APPENDIX A

PSEUDOCODE FOR SERIES EXPANSION

This section explains how to implement the O(pD) series-expansion mechanisms in

computer languages such as C/C++.

Storing the Far-field/Local Moments as a Linear Array. Although the mo-

ments are inherently multi-dimensional, we store all coefficients in a C-style one-

dimensional array. Each query node stores (pmax + 1)D local moment terms. Sim-

ilarly, each reference node stores (pmax + 1)D far-field moment terms. These are

allocated as a linear array during the construction of the two trees, as shown in Fig-

ure 26 which implies a bijective mapping between D-digit radix-(pmax + 1) numbers

and decimal numbers between 0 and (pmax + 1)D - 1 inclusive.

Converting between a Position and a Multi-index in the Linear Array.

Algorithm A.0.1 shows the mapping from a position in the linear array of (pmax + 1)D

terms to its corresponding multi-index. The algorithm converts the given position

(given in base 10) to a number in base p. Algorithm A.0.2 converts the given multi-

Algorithm A.0.1 PositionToMultiindex(i, p): Converts the position of a linear
array of length (p+ 1)D to its multi-index.

{i-th position maps to the multi-index α.}
αi=1,··· ,D ← 0
for d = D to d = 1 do
α[d− (D − 1)]←

⌊
i

p+1

⌋
i← i mod (p+ 1)

return α

index to its corresponding position in the linear array of length (pmax + 1)D.
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Algorithm A.0.2 MultiIndexToPosition(α): Converts the given multi-index to
its corresponding position in the linear array of length (pmax + 1)D.

x← 0, f ← 1
for d = D to d = 1 do
x← x+ f ·α[d]
f ← f · (pmax + 1)

return x

Computing a Multi-index Expansion of a Vector. A multi-index expansion

of a vector x ∈ RD up to pD terms is basically the set of coefficients {xα}α<p. See

Figure 64. This is used in the process of forming a far-field moment contribution of

a single reference point in AccumulateFarFieldMoment and evaluating a local

expansion in EvalLocalExpansion.

Figure 64: The multi-index expansion of x = [x[1],x[2]]T up to 16 terms.

Algorithm A.0.3 MultiIndexExpansion(x, p,M′): Computes M ′ = {xα}α<p.
M′[0]← 1
for each i = 0 to i = (p+ 1)D − 1 do
{Retrieve the multi-index mapping of the current position.}
α← PositionToMultiindex(i, p)
j ← the first index of α such that α[j] ≥ 1.
{Found a direct ancestor of the multiindex map α.}
α′ ← α, α′[j]← α′[j]− 1
{Recursively compute the α-th multi-index component based on α′-th.}
M′[i]←M′[MultiIndexToPosition(α′)] · x[j]

Far-field Moment Accumulation (Equation (3.1.11)). This is straightforward

given the implementation of the function MultiIndexExpansion. It computes the

multi-index of each reference point in the given reference node and accumulates each
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Algorithm A.0.4 AccumulateFarFieldMoment(Rsub): Equation (3.1.11).

{Temporary space that is equal in size to {Mα(Rsub , cRsub)}α≤pmax .}
M′

i=0,··· ,(pmax+1)D−1 ← 0

for each rjn ∈ Rsub do

{Add M′ =
{(

rjn−c
Rsub√

2h2

)α}
α≤pmax

onto {Mα(Rsub , cRsub)}α≤pmax .}

MultiIndexExpansion
(

rjn−c
Rsub√

2h2
, pmax ,M

′
)

{Mα(Rsub , cRsub)}α≤pmax ← {Mα(Rsub , cRsub)}α≤pmax + M′

for i = 0 to i = (pmax + 1)D − 1 do
Mα(Rsub , cRsub)←Mα(Rsub , cRsub) · 1

α!

contribution and normalizes the sum. See Algorithm A.0.4.

Far-to-Far Translation Operator (shown in Algorithm A.0.5). This consists of a

doubly-nested for-loop over accumulated far-field moments.

Algorithm A.0.5 TransFarToFar(R′,Rsub): Implements Equation (3.1.17).

{Allocate space for and compute
{(

cR′−c
Rsub√

2h2

)α}
α≤pmax

.}
Ci=0,··· ,(pmax+1)D−1 ← 0

MultiIndexExpansion
(

cR′−c
Rsub√

2h2
, pmax ,C

)
for i = 0 to i < (pmax + 1)D do
γ ← PositionToMultiindex(i, pmax )
for j = 0 to j < (pmax + 1)D do
α← PositionToMultiindex(j, pmax )
if α ≤ γ then
Mγ(Rsub , cRsub)←Mγ(Rsub , cRsub)+

1
(γ−α)!

Mα(R′, cR′) · C[MultiIndexToPosition(γ −α)]

Computing the Multivariate Hermite Functions. We exploit the fact that

the multivariate Hermite functions is a product of D univariate Hermite functions.

Algorithm A.0.6 computes partial derivatives of the Gaussian kernel evaluated at the

given point x along each dimension up to p-th order. hα(x) =
D∏
d=1

hα[d](x) is a simple

product of the univariate functions (see Algorithm A.0.7).

193



Algorithm A.0.6 ComputePartialDerivatives(a, p,H): Evaluates the partial
derivatives of exp (−x2/(2h2)) up to p-th order at each coordinate of a.

for d = 1 to D do
H[d][0]← exp (−(a[d])2)
if p > 1 then

H[d][1]← 2 · a[d] · exp (−(a[d])2)
if p > 2 then

for k = 1 to k = p− 1 do
H[d][k + 1]← 2 · a[d] ·H[d][k]− 2 · k ·H[d][k − 1]

Algorithm A.0.7 ComputeHermiteFunction(H,α): Computes the Hermite
function hα(·) using the pre-computed partial derivatives H.

f ← 1
for d = 1 to D do
f ← f ·H[d][α[d]]

return f

Evaluating a Far-field Expansion. Once the functions for computing the Hermite

functions (Algorithm A.0.6 and Algorithm A.0.7), we can implement the function for

evaluating a far-field expansion up to O(pD) terms, as shown in Algorithm A.0.8. The

basic structure is one outer-loop over each query point and the inner loop iterating

over each far-field moment. The contribution to each query point is computed as a

dot-product between the far-field moment and the computed Hermite functions (see

Figure 18).

Far-to-Local Translation Operator. The basic structure of the algorithm is

a doubly nested for-loop, each over the coefficients. The doubly-nested for-loop

first translate a portion of the accumulated far-field moments of Rsub up to pD

terms into the local moments. The final step of the algorithm is to add the trans-

lated moments Ñβ({(M(Rsub , cRsub), (cQsub , p))}) to the local moments stored in Qsub ,

Ñβ(cQsub ,RDL(Qsub) ∪RF2L(Qsub)). See Algorithm A.0.9.
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Algorithm A.0.8 EvalFarFieldExpansion(Rsub ,Qsub , p): Evaluates the far-field
expansion of Rsub up to (p+ 1)D terms.

{Allocate space for holding the partial derivatives.}
Hd=1,··· ,D

k=0,··· ,p
← 0

for each qim ∈ Qsub do
{Compute partial derivatives up to p-th order along each dimension.}
ComputePartialDerivatives

(
qim−c

Rsub√
2h2

, p,H
)

w ← 0
for i = 0 to i = (p+ 1)D − 1 do
α← PositionToMultiindex(i, p)
f ← ComputeHermiteFunction(H,α)
w ← w +Mα(Rsub , cRsub) · f

Φ̃(qim ; RDF(qim))← Φ̃(qim ; RDF(qim)) + w

Direct Local Accumulation Operation. The basic structure is a doubly-nested

for-loop, the outer-loop over the reference points whose moments are to be accu-

mulated as local moments and the inner loop over the coefficient positions. See

Algorithm A.0.10.

Local-to-Local Translation Operator. We direct readers’ attention to the first

step of the algorithm, which retrieves the maximum order among used in local moment

accumulation/translation. Then the algorithm proceeds with a doubly-nested for-loop

over the local moments applies Equation (3.1.18). See Algorithm A.0.11.

Evaluating the Local Expansion of a Query Node. This function (see Algo-

rithm A.0.12) contains one outer-loop over reference points and the inner-loop over

the local moments up to (p+1)D terms, where p is the maximum approximation order

used among the reference nodes pruned via far-to-local and direct local accumulations.
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Algorithm A.0.9 TransFarToLocal(Rsub ,Qsub , p): Implements Equa-
tion (3.1.13).

Hd=1,··· ,D
k=0,··· ,2p

← 0

ComputePartialDerivatives
(

c
Qsub−c

Rsub√
2h2

, 2p,H
)

for i = 0 to i = (p+ 1)D − 1 do
β ← PositionToMultiindex(i, p)
for j = 0 to j = (p+ 1)D − 1 do
α← PositionToMultiindex(j, p)
f ← ComputeHermiteFunction(H,α+ β)

Ñβ
({
Mβ(Rsub , cRsub), cQsub , p)

})
← Ñβ

({
Mβ(Rsub , cRsub), cQsub , p)

})
+

Mα(Rsub , cRsub) · f
Ñβ
({
Mβ(Rsub , cRsub), cQsub , p)

})
← (−1)|β|

β!
Ñβ
({
Mβ(Rsub , cRsub), cQsub , p)

})
{Ñβ(cQsub ,RDL(Qsub) ∪ RF2L(Qsub))}β≤p ← {Ñβ(cQsub ,RDL(Qsub) ∪
RF2L(Qsub))}β≤p +

{
Ñβ
({
Mβ(Rsub , cRsub), (cQsub , p)

})}
β≤p

Algorithm A.0.10 AccumulateDirectLocalMoment(Rsub ,Qsub , p): Imple-
ments Equation (3.1.12).

Hd=1,··· ,D
k=0,··· ,p

← 0, {Nβ({(Rsub , (cQsub , p))})}β≤p ← 0

for each rjn ∈ Rsub do

ComputePartialDerivatives
(

c
Qsub−rjn√

2h2
, p,H

)
for i = 0 to (p+ 1)D − 1 do
α← PositionToMultiindex(i, p)
f ← ComputeHermiteFunction(H,β)
Nβ({(Rsub , (cQsub , p))})}β≤p ← Nβ({(Rsub , (cQsub , p))})}β≤p + f

{Nβ({(Rsub , (cQsub , p))})}β≤p ← {Nβ({(Rsub , (cQsub , p))})}β≤p · (−1)|β|

β!

{Ñβ(cQsub ,RDL(Qsub) ∪ RF2L(Qsub))}β≤p ← {Ñβ(cQsub ,RDL(Qsub) ∪
RF2L(Qsub))}β≤p + {Nβ({(Rsub , (cQsub , p))})}β≤p
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Algorithm A.0.11 TransLocalToLocal(Qsub′ ,Qsub): Implements Equa-
tion (3.1.18).

{p is the maximum approximation order used among the reference nodes pruned
via far-to-local and direct local accumulations for Qsub′ .}
{Temporary space that is equal in size to {Ñβ}.}
{X}0,··· ,(p+1)D−1 ← 0

MultiIndexExpansion
(

c
Qsub−c

Qsub′√
2h2

, p,X
)

for j = 0 to (p+ 1)D − 1 do
α← PositionToMultiindex(j, p)
for k = 0 to (p+ 1)D − 1 do
β ← PositionToMultiindex(k, p)
if β ≥ α then
Ñβ(cQsub ,RDL(Qsub′)∪RF2L(Qsub′))← Ñβ(cQsub ,RDL(Qsub′)∪RF2L(Qsub′))+

β!
α!(β−α)!

Lβ(cQsub′ ,RD(Qsub′) ∪RT (Qsub′))Xβ−α

{Ñβ(cQsub ,RDL(Qsub) ∪ RF2L(Qsub))}β≤p ← {Ñβ(cQsub ,RD(Qsub) ∪
RF2L(Qsub))}β≤p + {Ñβ(cQsub ,RD(Qsub′) ∪RF2L(Qsub′))}β≤p

Algorithm A.0.12 EvalLocalExpansion(Qsub): Evaluates the accumulated local
expansion of the given query node Qsub .

{p is the maximum approximation order used among the reference nodes pruned
via far-to-local and direct local accumulations for Qsub .}
{Temporary space to hold the multi-index expansion of each

(
qim−c

Qsub√
2h2

)α
.}

Xi=0,··· ,pD−1 ← 0

for each qim ∈ Q do
z ← 0
{Compute the multi-index expansion of

qim−c
Qsub√

2h2
up to pD terms.}

MultiIndexExpansion
(

qim−c
Qsub√

2h2
, p,X

)
for i = 0 to i = pD − 1 do
β ← PositionToMultiindex(i, p)

z ← z + Ñβ(cQsub ,RDL(Qsub) ∪RF2L(Qsub)) · z
Φ̃(qim ; RDL(qim) ∪RF2L(qim))← Φ̃(qim ; RDL(qim) ∪RF2L(qim)) + z
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