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Abstract

Kernel summations are a ubiquitous key computational bot-

tleneck in many data analysis methods. In this paper, we

attempt to marry, for the first time, the best relevant tech-

niques in parallel computing, where kernel summations are

in low dimensions, with the best general-dimension algo-

rithms from the machine learning literature. We provide

the first distributed implementation of kernel summation

framework that can utilize: 1) various types of determin-

istic and probabilistic approximations that may be suitable

for low and high-dimensional problems with a large number

of data points; 2) any multi-dimensional binary tree using

both distributed memory and shared memory parallelism; 3)

a dynamic load balancing scheme to adjust work imbalances

during the computation. Our hybrid MPI/OpenMP code-

base has wide applicability in providing a general framework

to accelerate the computation of many popular machine

learning methods. Our experiments show scalability results

for kernel density estimation on a synthetic ten-dimensional

dataset containing over one billion points and a subset of the

Sloan Digital Sky Survey Data up to 6,144 cores.

1 Introduction

Kernel summations occur ubiquitously in both old and
new machine learning algorithms, including kernel den-
sity estimation [31], kernel regression [26], Gaussian pro-
cess regression [33], kernel PCA [39], and kernel support
vector machines (SVM) [38]. In these methods, we are
given a set of reference/training points ri ∈ R

D, R =[
r1, · · · , r|R|

]
and their weightsW =

[
w1, · · · , w|R|

]
and

a set of query/test points qj ∈ R
D, Q =

[
q1, · · · , q|Q|

]

(analogous to the source points and the target points in
FMM literature). We consider the problem of rapidly
evaluating, for each q ∈ Q, sums of the form :

(1.1) f(q;R) =

|R|∑

i=1

wik(q, ri)

where k(·, ·) : RD × R
D → R is the given kernel.
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Method k(·, ·) Train/Batch
test

KDE [31]/NWR [26] PDFs ✔ / ✔

KSVM [38]/GPR [33] PD kernels ✕ / ✔

KPCA [39] CPD kernels ✕ / ✔

Table 1: Methods that can be sped up using our frame-
work. Although the parts marked with ✕ can be sped up
in some cases by sparsifying the kernel matrix and ap-
plying Krylov-subspace methods, computed results are
usually numerically unstable.

In this paper, we consider the setting of evaluat-
ing f(q;R) on a distributed set of training points/test
points. Data may be distributed because: 1) it is more
cost-effective to distribute data on a network of less
powerful nodes than storing everything on one powerful
node; 2) it allows distributed query processing for high
scalability. Each process (which may/may not be on the
same node) owns a subset of R and Q and needs to ini-
tiate communications (i.e. MPI, memory-mapped files)
when it needs a remote piece of data owned by another
process. Cross-validation in all of the methods above
require evaluating Equation 1.1 for multiple parameter
values, yielding O(D|Q||R|) cost. Especially, |Q| and
|R| can be prohibitively large so that one CPU cannot
handle the computation in a tractable amount of time.
Unlike the usual 3−D setting in N -body simulations, D
may be as high as 1000 in many kernel methods. This
paper attempts to provide a general framework that
encompasses acceleration techniques for a wide range
of both low-dimensional and high-dimensional problems
with a large number of data points.
Shared/distributed memory parallelism. Achiev-
ing scalability in distributed setting requires: 1) mini-
mizing inherently serial portions of the algorithm (Am-
dahl’s law); 2) minimizing the time spent in criti-
cal sections; 3) overlapping communication and com-
putation as much as possible. To achieve this goal,
we utilize OpenMP for shared-memory parallelism and
MPI for distributed-memory parallelism in a hybrid
MPI/OpenMP framework. Kernel summation can be



Approximation Type Basis functions Applicability
Series expansion [21, 19] Deterministic Taylor basis General
Reduced set [38] Deterministic Pseudo-particles Low-rank PD/CPD kernels
Monte Carlo [16, 20] Probabilistic None General smooth kernels
Random feature extraction [32] Probabilistic Fourier basis Low-rank PD/CPD kernels

Table 2: Examples of approximation schemes that can be utilized in our framework.
Tree type Bound type Rule(x)
kd-trees [5] hyper-rectangle {bd,min, bd,max}

D
d=1 xi ≤ si for 1 ≤ i ≤ D, bd,min ≤ si ≤ bd,max

metric trees [27] hyper-sphere B(c, r), c ∈ R
D, r > 0 ||x− pleft || < ||x− pright || for pleft , pright ∈ R

D

vp-trees [46] B(c, r1) ∩B(c, r2) for 0 ≤ r1 < r2 ||x− p|| < t for t > 0, p ∈ R
D

RP-trees [12] Hyperplane aTx = b xT v ≤ Median(zT v : z ∈ S)

Table 3: Examples of multi-dimensional binary trees that can be utilized in our framework. If Rule(x) returns
true, then x is assigned to the left child (as defined in [12]).

parallelized because each f(q;R) can be computed in
parallel. In practice, Q is partitioned into a pairwise

disjoint set of points Q =
t⋃

i=1

Qi and a set of batch

sums for each Qi proceeds in parallel. We use a query
subtree as Qi (see Figure 6) since their spatial proximity
makes it more efficient to be processed as a group.

1.1 Our Contributions In this paper, we attempt
to marry, for the first time, the best relevant techniques
in parallel computing, where kernel summations are in
low dimensions, with the best general-dimension algo-
rithms from the machine learning literature. We provide
a unified, efficient parallel kernel summation framework
that can utilize: 1) various types of deterministic and
probabilistic approximations (Table 2) that may be suit-
able for both low and high-dimensional problems with a
large number of data points; 2) any multi-dimensional
binary tree using both distributed memory (MPI) and
shared memory (OpenMP) parallelism (Table 3 lists
some examples); 3) a dynamic load balancing scheme to
adjust work imbalances during the computation. Our
framework provides a general approach for accelerat-
ing the computation of many popular machine learning
methods (see Table 1). Our motivation is similar to
that of [22], where a general framework was developed
to support various types of scientific simulations, and is
based on parallelization of the dual-tree method [13].
Outline of this paper. In Section 3, we show how to
exploit distributed/shared memory parallelism in build-
ing distributed multidimensional trees. In Section 4, we
describe the overall algorithm and the parallelism in-
volved. In Section 4.2, we describe how we exchange
messages among different processes using the recursive
doubling scheme; during this process, we touch briefly
upon a problem of distributed termination detection.

In Section 4.3, we discuss our static and dynamic load
balancing schemes. In Section 5, we demonstrate the
scalability of our framework on kernel density estima-
tion on both synthetically generated dataset and a sub-
set of SDSS dataset [48]. In Section 6, we discuss some
limitations and planned extensions.
Terminology. AnMPI communicator connects a set of
MPI processes, each of which is given a unique identifier
called an MPI rank, in an ordered topology. Commonly
used topologies include: the ring topology, the star
topology, and the hypercube topology. We denote
Cworld as the MPI communicator over all MPI processes,
and DP the portion of the data D owned by the P -th
process. In this paper, we assume that: 1) the nodes
are connected using a hypercube topology since it is the
most commonly used one; 2) there are pthread threads
associated with each MPI process; 3) the number of
MPI processes p is a power of two, though our approach
can be easily extended for arbitrary positive integers p;
4) the query set equals the reference set (Q = R, and
we denote D as the common dataset and N = |D| the
size of the dataset), and D is equidistributed across all
MPI processes. Particularly the monochromatic case
of Q = R occurs often in cross-validating for optimal
parameters in many non-parametric methods.

2 Related Work

2.1 Error Bounds Many algorithms approximate
the kernel sums at the expense of reduced precision.
The following error bounding criteria are variously used
in the literature:

Definition 2.1. τ absolute error bound: For each

f(qi;R) for qi ∈ Q, it computes f̃(qi;R) such that∣∣∣f̃(qi;R)− f(qi;R)
∣∣∣ ≤ τ .



Definition 2.2. ǫ relative error bound: For each

f(qi;R) for qi ∈ Q, compute f̃(qi;R) such that∣∣∣f̃(qi;R)− f(qi;R)
∣∣∣ ≤ ǫ |f(qi;R)|.

Bounding the relative error is much harder because
the error bound criterion is in terms of the initially
unknown exact quantity. As a result, many previous
methods [15, 45] have focused on bounding the absolute
error. The relative error bound criterion is preferred
to the absolute error bound criterion in statistical
applications in which high accuracy is desired. Our
framework can enforce the following error form:

Definition 2.3. (1 − α) probabilistic ǫ relative/τ
absolute error: For each f(qi;R) for qi ∈ Q, compute

f̃(qi;R), such that with at least probability 0 < 1−α ≤ 1,∣∣∣f̃(qi;R)− f(qi;R)
∣∣∣ ≤ ǫ |f(qi;R)|+ τ .

2.2 Serial Approaches Fast algorithms for evaluat-
ing Equation (1.1) can be divided into two types: 1) re-
duced set methods from the physics/machine learning
communities [38]; 2) hierarchical methods which em-
ploy spatial partitioning structures such as octrees, kd-
trees [5], and cover-trees [6].
Reduced set methods. Reduced set methods express
each data point as a linear combination of points (so
called dictionary points each of which gives arise to the
function b : RD × R

D → R):

f(q;R) ≈ freduced(q;Rreduced ) =
∑

dk∈S

ukb(q, dk)

where |Rreduced | ≪ |R| and the resulting kernel sum
can be evaluated more quickly. In the physics com-
munity, uniform grid points are chosen and points are
projected on Fourier bases (i.e. b(·, ·) is the Fourier ba-
sis). Depending on how the particle-particle interac-
tions are treated, a FFT-based summation method be-
longs to the category of Particle-Particle-Particle Mesh
(P 3M) method or Particle-Mesh (PM) method. How-
ever, these methods do not scale beyond three dimen-
sions due to uniform grids. Recently, machine learn-
ing practitioners have employed a variant of reduced
set method that utilize positive-definiteness (or condi-
tionally positive-definiteness) of the kernel function and
successfully scaled many kernel methods such as SVM
and GPR [44, 43, 28, 40]. However, these methods re-
quire optimizing the basis points given a pre-selected
error criterion (i.e. on reconstruction error in the re-
producing kernel Hilbert space or generalization error
with/without regularization) and the resulting dictio-
nary Rreduced can be quite large in some cases.
Hierarchical methods. Most hierarchical methods
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Figure 1: The reference points (the left tree) are
hierarchically compressed and uncompressed when a
pair of query (from the right tree)/reference nodes is
approximated within an error tolerance.

Algorithm 2.1. DualTree(Q,R)
if CanSummarize(Q,R) then

Summarize(Q,R)
else

if Q is a leaf node and R is a leaf node then

DualTreeBase(Q,R)
else

DualTree
(

QL, RL
)

, DualTree
(

QL, RR
)

DualTree
(

QR, RL
)

, DualTree
(

QR, RR
)

end if

end if

using trees utilize series expansions (see Figure 1). The
pseudocode for a dual-tree method [13] that subsumes
most of hierarchical methods is shown in Algorithm 2.1.
The first expansion called the far-field expansion sum-
marizes the contribution of Rsub for a given query q:

f(q;Rsub) =
∑

rjn∈Rsub

wjnk(q, rjn)

=
∑

rjn∈Rsub

wjn

∞
∑

m=1

bmφm(q,Rsub)ψm(rjn , Rsub)

=

∞
∑

m=1

φm(q,Rsub)





∑

rjn∈Rsub

bmwjnψm(rjn , Rsub)





=

∞
∑

m=1

φm(q,Rsub)Mm(Rsub)



where φm’s and ψm’s show dependence on the subset
Rsub . The second type called the local expansion for
q ∈ Qsub ⊂ Q expresses the contribution of Rsub near q:

f(q;Rsub) =
∑

rjn∈Rsub

wjnk(q, rjn)

=
∑

rjn∈Rsub

wjn

∞
∑

m=1

gmφm(rjn , Qsub)ψm(q,Qsub)

=
∞
∑

m=1

ψm(q,Qsub)





∑

rjn∈Rsub

gmwjnφm(rjn , Qsub)





=
∞
∑

m=1

ψm(q,Qsub)Lm(R,Qsub)

Both representation are truncated at a finite num-
ber of terms depending on the level of prescribed ac-
curacy, achieving O(|Q| log |R|) runtime in most cases.
To achieve O(|Q|+ |R|) runtime, we require an efficient
linear operator that converts Mm(R) into Lm(R,Q)’s.
Depending on the basis representations of φ’s and ψ’s,
the far-to-local linear operator is diagonal and the trans-
lation is linear in the number of coefficients. There are
many serial algorithms [3, 4, 14, 15, 8, 13, 47] that use
different series expansions forms to bound error deter-
ministically. [16] proposes a probabilistic approximation
scheme based on the central limit theorem, and [20]
used both deterministic and probabilistic approxima-
tions. Especially, probabilistic approximations can help
overcome the curse of dimensionality at the expense of
indeterminism in approximated kernel sums.

In this paper, we focus on hierarchical methods be-
cause: 1) it is a natural framework to control approxi-
mation in a varying degree of resolution; 2) the special-
ized acceleration techniques for positive-definite kernels
can be plugged in as a special case. We would like to
point out that the code base can also be used in scientific
N -body simulations [22] but we will defer its applica-
tions in a future paper.

2.3 Parallelizations Hierarchical N -body methods
present an interesting challenge in parallelization: 1)
both data distribution and work distribution are highly
non-uniform across MPI processes; 2) often involves
long-range communication due to the kernel function
k(·, ·). In the worst case, every process will need almost
every piece of data owned by the other processes. Here
we discuss the three main important issues in a scalable
distributed hierarchical N -body code:
Parallel tree building: [18] proposed a novel dis-
tributed octree construction algorithm and a new re-
duction algorithm for evaluation to scale up to over 65K
cores. [2] describes a parallel kd-tree construction on a
distributed memory setting, while [9] works on a shared-

memory setting. [23] discuss building spill-trees, a vari-
ant of metric trees that permit overlapping of data be-
tween two branches, using the map-reduce framework.
Load balancing: Most common static load balancing
algorithms include: 1) the costzone [42] which partitions
a pre-built query tree and assigns each query particle to
a zone. A common approach employs a graph parti-
tioner [11]; 2) the ORB (orthogonal recursive bisection)
which directly partitions each dimension of the space
containing the query points in a cyclic fashion. Dynamic
load balancing [24] strategies adjust the imbalance be-
tween the work loads during the computation.
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Figure 2: Recursive doubling on the hypercube topol-
ogy. Initially, each node begins with its own message
(top left). The exchanges proceed in: the top right, the
bottom left, then bottom right in order. Note that the
amount of data exchanged in each stage doubles.

Interprocess communication: The local essential
trees approach [35] (which involves few large-grained
communication) is a sender-initiated communication
approach. Using the ORB, each process sends out es-
sential data that may be needed by the other processes
using the recursive doubling scheme (see Figure 2). An
alternative approach has the receiver initiate communi-
cation; this approach involves many fine-grained com-
munication, and is preferable if interprocess communi-
cation overheads are small. For more details, see [41].

3 Distributed Multidimensional Tree

Our approach for building a general-dimension dis-
tributed tree closely follows [2]. Following the ORB
(orthogonal recursive bisection) in [35], we define the
global tree, which is a hierarchical decomposition of the
data points on the process level. The local tree of each
process is built on its own local data DP .



P0 P1 P2 P3

Figure 3: Each process owns the global tree of processes
(the top part) and its own local tree (the bottom part).

Building the distributed tree. Initially, all MPI
processes in a common MPI communicator agree on a
rule for partitioning each of its data into two parts (see
Figure 1). The MPI communicator is then split in two
depending on the MPI process rank. This process is
recursively repeated until there are log p levels in the
global tree. Shared-memory parallelism can be utilized
in the (independent) reduction step in each MPI process
in generating the split rule (see Figure 1). Depending
on a split rule and using C++ meta-programming, we
can auto-generate any binary tree (see Table 3) utiliz-
ing an associative reduction operator for constructing
bounding primitives. Generalizing to multidimensional
trees with an arbitrary number of child nodes (such as
cover-trees [6]) is left as a future work.
Building the local tree. Here we closely follow the
approach in [9]. The first few levels of the tree are built
in a breadth-first manner with the assigned number
of OpenMP threads proportional to the number of
points participating in a reduction to form the bounding
primitive (see Figure 5). The number of participating
OpenMP threads per task halves as we descend each
level. Each independent task with only one assigned
OpenMP thread proceeds with the construction in
a depth-first manner. We utilized the nested loop
parallelization feature in OpenMP for this part.
Overall runtime complexity. All-reduce
operation on the hypercube topology takes
O (ts log p+ twm(p− 1)) where ts, tw, and m are
the latency constant, the bandwidth constant, and the
message size respectively. Assume that each process
starts with the same number of points N

p
and each

split on a global/local level results in equidistribution
of points and only distributed memory parallelism is
used (i.e. pthread = 1). Let mbound be the message size
of the bounding primitive divided by D. The overall

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

P7P6P5P4P3P2P1P0

P7P6P5P4P3P2P1P0

Figure 4: Distributed memory parallelism in building
the global tree (the first log p levels of the entire tree).
Each solid arrow indicates a data exchange between two
given processes. After exchanges on each level, the MPI
communicator is split (shown as a dashed arrow) and
the construction works in parallel subsequently.

runtime for each MPI process is:

• The reduction cost and the split cost at each level

0 ≤ i < log p: O
(

2N(D+tw)
p

)

• The all-reduce cost on each level 0 ≤ i < log p:
O(twDmbound

(
p
2i − 1

)
)

• The total latency cost at each level 0 ≤ i < log p:
O
(
ts
(
log p

2i + 1
))
.

• The base case at the level log p (the depth-first

build of local tree): O
(

DN
p

log
(

N
p

))

Therefore, the overall complexity is: O
(

DN
p

log
(

N
p

))
+

O (Dtwmbound (2p− log 4p)) + O
(

2N(D+tw)
p

log p
)

+

O
(
ts
2 log p (log p+ 3)

)
. This implies that the growth of

the number of data points must be N logN ∼ O(p2) to
achieve the same level of parallel efficiency. Note that
the last terms have zero contribution if p = 1.

4 Overall Algorithm

Algorithm 4.1 shows the overall algorithm. Initially,
each MPI process initializes its distributed task queue
by dividing its own local query subtree into a set of T
query grain subtrees where T > pthread is more than the
number of threads pthread running on each MPI process;
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Figure 5: Shared-memory parallelism in building the
local tree for each MPI process. The first top levels
are built in a breadth-first manner with the number
of threads proportional to the amount of performed
reduction. Any task with one assigned thread proceeds
in a depth-first manner.

initially each of these trees has no tasks. The tree
walker object maintains a stack of pairs of Q and RP

that must be considered. It is first initialized with the
following tuple: the root node of Q, the root node of the
local reference tree RP , and the probability guarantee
α; the relative error tolerance/absolute error tolerance
are global constants ǫ and τ respectively. Threads not
involved with the tree walk or exchanging data can
dequeue tasks from the local task queue.

4.1 Walking the Trees Each MPI process takes the
root node of the global query tree (the left tree) and the
root node of its local reference tree (the right tree) and

Algorithm 3.1. BuildDistTree(Cworld , DP ): (MPI)
C ← Cworld

while C.size() > 1 do

rule ← ChooseSplitRule(C,DP )
for each P -th MPI process in C in parallel do

Divide DP = LP ∪RP using rule.
if P <

|C|
2

then

Pcomp ← P + |C|
2
, Send(Pcomp , RP )

Lcomp ← Receive(Pcomp), Dp ← Lp ∪ Lcomp

else

Pcomp ← P − |C|
2
, Rcomp ← Receive(Pcomp)

Send(Pcomp , LP ), Dp ← Rp ∪Rcomp

end if

C ← SplitComm(P >= |C|
2
)

end for

end while

BuildLocalTree(DP )

Algorithm 3.2. ChooseSplitRule(W,DP ):
(OpenMP)
blocal ← an empty bound
for each data point r ∈ DP in parallel do

Expand blocal to include r.
end for

bcommon ← Combine(W, blocal)
return Rule(x) using bcommon .

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 2 20 3

31

3

Figure 6: The global query tree is divided into a set
of query subtrees each of which can queue up a set
of reference subset to compute (shown vertically below
each query subtree). The kernel summations for each
query subtree can proceed in parallel.

performs a dual-tree recursion (see Algorithm 4.2). For
simplicity, we show the case where the reference side is
descended first then the query side. Any of the running
threads can walk by dequeuing from the stack of frontier
nodes, generate local tasks, and queue up reference
subtrees to send to other processes. The expansion
can be prioritized using the Heuristic function that
takes a pair of query/reference nodes. It would be
possible to extend the walking procedure to include
fancier expansion patterns described in [34].

4.2 Message Passing Inspired by the local essen-
tial trees approach, we develop a message passing sys-
tem utilizing the recursive doubling scheme. We as-
sume that the master thread is the only thread that
may initiate MPI calls. The key differences from the
vanilla local essential tree approach are two-fold: 1)



Algorithm 4.1. Overall algorithm.
Each MPI process initializes its distributed task queue
with a set of query grain subtrees and the tree walker
with (Q,RP , ǫ, τ, α).
OpenMP parallel region start (threads spawned)
while there are remaining tasks globally do

if I am the master thread then

Route messages via recursive doubling.
end if

if If the task queue is nearly empty then

Walk() (Algorithm 4.2,Figure7).
end if

Choose a query subtree and lock it. Dequeue a set
of task from it and call the serial algorithm (Algo-
rithm 2.1) on each (Qsub , Rsub) pair. For each com-
pleted task, queue up completed work quantity.

Unlock the query subtree. If the checked out query
subtree is imported from another process and has no
more tasks, queue up a flush request to write back the
query subtree.

end while

OpenMP parallel region end (threads synchronized)

Algorithm 4.2. Walk()
while there is a MPI process asking for work do

(Qsub , Rsub , αsub)← Pop()
if CanSummarize(Qsub , Rsub , ǫ, τ, αsub) then

Summarize(Qsub , Rsub , ǫ, τ, αsub), Queue the work-
complete message (|Qsub ||Rsub |, {1, · · · , P − 1, P +
1, · · · , p}).

else

if Qsub is a root node of a query grain subtree then

if Rsub is a leaf node then

if Qsub belongs to the self, then
Add (Qsub , Rsub) to the task list of Qsub .

else

Add the MPI rank of Qsub to a list of Rsub ’s
destinations.

end if

else

(R1, R2)← Heuristic(Qsub , R
L
sub , R

R
sub)

Push
(

Qsub , R2,
αsub

2

)

, Push
(

Qsub , R1,
αsub

2

)

end if

else

if Rsub is a leaf node then

Push(QL
sub , Rsub , αsub), Push(Q

R
sub , Rsub , αsub)

else

(RL,1, RL,2)← Heuristic(QL
sub , R

L
sub , R

R
sub)

(RR,1, RR,2)← Heuristic(QR
sub , R

L
sub , R

R
sub)

Push
(

QR
sub , RR,2,

αsub

2

)

,Push
(

QL
sub , RL,2,

αsub

2

)

Push
(

QR
sub , RR,1,

αsub

2

)

,Push
(

QL
sub , RL,1,

αsub

2

)

end if

end if

end if

end while

our framework can support computations that have dy-
namic work requirement, unlike FMM; 2) our frame-
work does not require each MPI process to accommo-
date all of the non-local data in its essential tree. Al-
gorithm 4.3 shows the message passing routine called
by the master threshold on each MPI process. Any
message from a pair of processes in a hypercube topol-
ogy needs at most log p rounds of routing. At each
stage i, the process P with binary representation P =
(blog p−1, · · · , bi+1, 0, bi−1, · · · , b0)2 sends messages to
process Pneighbor = (blog p−1, · · · , bi+1, 1, bi−1, · · · , b0)2
(and vice versa). Here are the types of messages ex-
changed between a pair of processes:

1. Reference subtrees: each MPI process sends out
a reference subtree with the tag (Rsub , {Qsub}) where
{Qsub} is the list of remote query subtrees that needs
Rsub .
2. Work-complete message: whenever each thread
finishes computing a task (Qsub , Rsub), it queues up a
pair of completed work quantity and the list of all MPI
ranks excluding the self. The form of the message is:
(|Qsub ||Rsub |, {0, · · · , P − 1, P + 1, p− 1})).
3. Extra tasks: one of the paired MPI processes can
donate some of its tasks to the other (Section 4.3). This
has a form of (Qsub , {Rsub}) where {Rsub} is a list of
reference subsets that must be computed for Qsub .
4. Imported query subtree flushes: during load balanc-
ing, query subtrees with several reference tasks may be
imported from another process. These must be synchro-
nized with the original query subtree on its originating
process before tasks associated with it are dequeued.
5. The current load: the load is defined as the sum
of |QsubRsub | associated with all query subtrees (both
native and imported) on a given process.
Distributed termination detection. We follow a
similar idea discussed in Section 14.7.4 of [30], Initially,
all MPI processes collectively have to complete |Q||R|
amount of work. Each thread dequeues a work and com-
pletes a portion of its assigned local work (see Figure 6);
the completed work quantity is then broadcast using the
recursive doubling message passing to all the other pro-
cesses. The completed and uncompleted work is con-
served at any given point of time. When every process
thinks all of |Q||R| work have been completed and it has
sent out all of its queued up work-complete messages, it
can safely terminate.

4.3 Load Balancing Our framework employs both
static load balancing and dynamic load balancing.
Static load balancing. Each MPI task is initially in
charge of computing the kernel sums for all of its grain
query subtrees. This approach is similar to the ORB



Algorithm 4.3. RouteMessage

Pneighbor ← P XOR stage.
Asynchronously send to Pneighbor :

1. A set of query subtree flushes

2. A set of query subtrees with tasks

3. The work-complete messages

4. The recently received load estimates of other pro-
cesses.

From Pneighbor , receive:

1. A set of query subtree flushes from Pneighbor . Syn-
chronize those that belong to P .

2. Query subtrees with tasks from Pneighbor and have the
local task queue import them.

3. Load estimates of other processes from Pneighbor .

4. Work complete messages from Pneighbor and update
the global work count.

Wait until all sends are complete.
stage ← (stage + 1) mod log p

approach where the distributed tree determines the task
distribution.
Dynamic load balancing. It is likely that the
initial query subtree assignments will cause imbalance
among processes. During the computation, we allow
each query task to migrate from the current P -th
process to a neighboring Pneighbor -th process. We use
a very simple scheme in which two processes that are
paired up during each stage of the repeated recursive
doubling stages attempt to load balance. Each process
keeps sending out a snapshot of its computation load
in the recursive doubling scheme, and maintains a
table of estimated remaining amount of computation
on the other processes. Therefore, load estimates could
be outdated by the time a given process considers
transferring extra tasks. Therefore, we employ a simple
heuristic of initiating the load balance for a pair of
imbalanced processes: if the estimated load on the
process Pneighbor is below 0 < βthreshold < 1 of the
current load on the process P , transfer 0.5(1−βthreshold )
amount of tasks from P to Pneighbor .

5 Experimental Results

We developed our code base in C++ called MLPACK [7]
and utilized open-source libraries such as Boost li-
brary [17], Armadillo linear algebra library [37], and
the GNU Scientific Library [10]. We have tested on the
Hopper cluster at NERSC. Each node on the Hopper
cluster has 24 cores, and we used the recommended set-
ting of 6 OpenMP threads/node (pthread = 6) and a
maximum 4 MPI tasks/node and compiled using GNU

C++ compiler version 4.6.1 under the −O3 optimiza-
tion flag. The configuration details are available at [1].

We chose to evaluate the scalability of our frame-
work in the context of computing kernel density esti-
mates [31]. We used the Epanechnikov kernel k(q, r) =

I
(
1− ||q−r||2

h2

)
since it is the most asymptotically op-

timal kernel. For the first part of our experiments,
we considered uniformly distributed data points in the
10-dimensional hypercube [0, 1]10 since non-parametric
methods such as KDE and NWR require an exorbitant
number of samples in the uniform distribution case. Ap-
plying non-parametric methods for higher dimensional
datasets requires exploiting correlations between dimen-
sions [29]. For the second part, we measured the strong
scalability of our implementation on the SDSS dataset.
All timings are maximum ones across all processes.

5.1 Scalability of Distributed Tree Building We
have compared the strong scalability of building two
main tree structures: kd-trees and metric-trees on an
uniformly distributed 10-dimensional dataset contain-
ing 20,029,440 points (Figure 8). In all cases, build-
ing a metric-tree is more expensive than building a kd-
tree; a reduction operation in Algorithm 3.2 for metric-
trees involves distance computations whereas the reduc-
tion operator for kd-trees is the computation of min-
imum/maximum. For the weak-scaling result (shown
in Figure 9), we added 166,912 ten-dimensional data
points per core up to 1,025,507,328 points. Our anal-
ysis in Section 3 has shown that the exact distributed
tree building algorithm require the growth of the data
points to be N logN ∼ O(p2), and this is reflected in
our experimental results.

However, readers should note that: 1) the depth of
the trees built in our setting is much deeper than the
ones in other papers [18]. Each leaf in our tree contains
40 points; 2) the tree building is empirically fast. On
6,144 cores, we were able to build a kd-tree on over one
billion 10-dimensional data points under 30 seconds; 3)
the one-time cost of building the distributed tree can be
amortized over many queries.

[23] took a simple map-reduce approach in build-
ing a multidimensional binary tree (hybrid spill-trees
specifically). We conjecture that this approach may be
faster to build but result in slower query times due to
generating suboptimal partitions. Future experiments
will reveal its strengths and the weaknesses.

5.2 Scalability of Kernel Summation In this ex-
periment, we measure the scalability of the overall ker-
nel summation. Our algorithm has three main parts:
building the distributed tree (Algorithm 1), walking
the tree to generate the tasks (Algorithm 4.2,Figure 7),
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Figure 7: Illustration of the tree walk performed by the 0-th MPI process in a group of 4 MPI processes. Iteration
0: starting with the global query tree root and the root node of the local reference tree owned by the 0-th MPI
process; Iteration 1-2: descend the reference side before expanding the query side; Iteration 3: the reference
subtree 12 is pruned for the 0-th and 1st MPI processes; Iteration 6-7: the reference subtree 12 is hashed to the
list of subtrees to be considered for the query subtrees 8 and 9 (owned by the 2nd MPI process); Iteration 8:
the reference subtree 12 is pruned for the 3rd MPI process. Iteration 9: the reference subtree 13 is considered
subsequently after the reference subtree 12. At this point, the hashed reference subtree list includes (12, {8, 9}).
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Figure 8: Strong scaling result for distributed kd-tree
building on an uniform point distribution in the 10-
dimensional unit hypercube [0, 1]10. The dataset has
20,029,440 points. The base timings for 6 cores are 105
seconds and 52.9 seconds for metric-tree and kd-tree
respectively.
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Figure 9: Weak scaling result for distributed kd-tree
building on an uniform point distribution in 10 dimen-
sions. We used 166,912 points / core. The base timing
for 6 cores is 2.81 seconds.
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Figure 10: Weak scaling result for overall kernel sum-
mation computation on an uniform point distribution
in 10 dimensions. We used 166,912 points / core and
ǫ = 0.1 and h = 1

1024 , halving h for every 4-fold increase
in the number of cores. The base-timings for 6 cores
are: 2.84 seconds for tree building, 1.8 seconds for the
tree walk, and 128 seconds for the computation.

and performing reductions on the generated tasks (Fig-
ure 6). The kernel summation algorithm tested here
employs only the deterministic approximations [21, 19].
We used ǫ = 0.1, τ = 0, and α = 1 (see Definition 2.3).
Weak scaling. We measured the weak scalability of
all phases of computation (the distributed tree building,
the tree walk, and the computation). The data distri-
bution we consider is a set of uniformly distributed 10-
dimensional points. We vary the number of cores from
96 to 6144, adding 166,912 points per core. We used
ǫ = 0.1 and decreased the bandwidth parameter h as
more cores are added to keep the number of distance
computations constant per core; a similar experiment
setup was used in [36], though we plan to perform more
thorough evaluations. The timings for the computation
maintains around 60 % parallel efficiency above 96 cores.
Strong scaling. Figure 11 presents strong scaling
results on a 10 million/4-dimensional subset of the SDSS
dataset. We used the Epanechnikov kernel with h =
0.000030518 (chosen by the plug-in rule) with ǫ = 0.1.

6 Conclusion

In this paper, we proposed a hybrid MPI/OpenMP
kernel summation framework for scaling many popu-
lar data analysis methods. Our approach has advan-
tages including: 1) the platform-independent C++ code
base that utilize standard protocols such as MPI and
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Figure 11: Strong scaling result for overall kernel
summation computation on the 10 million subset of
SDSS Data Release 6. The base timings for 24 cores
are: 13.5 seconds, 340 seconds, 2370 seconds for tree
building, tree walk, and computation respectively.

OpenMP; 2) the template code structure that uses any
multidimensional binary trees and any approximation
schemes that may be suitable for high-dimensional prob-
lems; 3) extendibility to a large class of problems that
require fast evaluations of kernel sums. Our future work
will address: 1) distributed computation on unreliable
network connections; 2) extending to take advantage
of heterogeneous architectures including GPGPUs for
a hybrid MPI/OpenMP/CUDA framework; 3) exten-
sion of the parallel engine to handle problems with more
than pair-wise interactions, such as the computation of
n-point correlation functions [13, 25].
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