
Dual-Tree Fast Gauss Transforms Dongryeol Lee
Alexander Gray
Andrew Moore

Georgia Institute of Technology
Georgia Institute of Technology
Carnegie Mellon University

(dongryel@cc.gatech.edu)
(agray@cc.gatech.edu)
(awm@cs.cmu.edu)

Problem
Kernel summations using the Gaussian kernel
K(||xq − xr||) = e

−||xq−xr||2
2h2 with bandwidth h are common

in many machine learning methods and physics
problems. Given a set of reference points XR and a
set of query points XQ in a metric space, the goal is to
compute ∀xq ∈ XQ the estimate G̃(xq) of
G(xq) =

∑

xr∈XR

K(||xq − xr||) as fast as possible while
ensuring the user-specified error tolerance ε:
∀xq ∈ XQ,

|G̃(xq)−G(xq)|
G(xq)

≤ ε

Previous Approaches and Our Contribution
Discrete/geometric aspect The dual-tree framework
[5], a recursive approach utilizing adaptive data
structures (e.g. kd-tree), generalizes all of the
well-known algorithms [1, 2, 4, 7] with automatic error
control using finite-difference approximation.
Continous/approximation aspect The original Fast
Gauss Transform [8] used multipole expansion on a
flat grid, with associated error bounds (that were
incorrect and later corrected by [3]). An approach
based on a flat-clustering scheme [11] also utilized
multipole-like approximation for Gaussian summations
but also had incorrect error bounds. Both of these
approaches, however, did not use a hierarchical
structure as done in [7] for the Coulombic kernel, and
require non-automatic parameter tweaking.
We propose a new method for Gaussian summation
by combining the best tools from discrete algorithms
(dual-tree methodology) and continuous
approximation theory (multipole expansion).
Performing multipole expansions for the Gaussian
kernel within a hierarchical context is non-trivial and
requires derivation of two new translational operators
with two associated error bounds.

References
[1] A. W. Appel. An Efficient Program for Many-Body Simulations. SIAM Journal on Scientific

and Statistical Computing, 6(1):85–103, 1985.
[2] J. Barnes and P. Hut. A Hierarchical O(NlogN) Force-Calculation Algorithm. Nature, 324,

1986.
[3] B. Baxter and G. Roussos. A New Error Estimate for the Fast Gauss Transform. SIAM

Journal on Scientific Computing, 24(1):257–259, 2002.
[4] P. Callahan and S. Kosaraju. A Decomposition of Multidimensional Point Sets with

Applications to K-Nearest-Neighbors and N -Body Potential Fields. Journal of the ACM,
62(1):67–90, January 1995.

[5] A. Gray and A. W. Moore, N -Body Problems in Statistical Learning, In T. K. Lenn, T. G.
Diettrich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13
(December 2000), MIT Press, 2001.

[6] A. Gray and A. W. Moore, Rapid Evaluation of Multiple Density Models, Artificial
Intelligence and Statistics 2003, 2003

[7] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulations. Journal of
Computational Physics, 73, 1987.

[8] L. Greengard and J. Strain, The Fast Gauss Transform, SIAM J. Sci. Stat. Comput., 12
(1991), pp. 79–94.

[9] D. Lee and A. Gray, Hierarchical Fast Gauss Transforms: Better Error Control and Higher
Dimensions, Submitted to SIAM Data Mining, under review.

[10] B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall,
1986.

[11] C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis, Improved Fast Gauss Transform
and Efficient Kernel Density Estimation, International Conference on Computer Vision, 2003.

Three Translation Operators
The first translation operator transfers the contribution of a refer-
ence node R into the Taylor series centered about xQ in a query
node Q. The next two operators are newly derived. H2H op-
erator allows efficient precomputation of the Hermite moments
in the reference tree in a bottom-up fashion from its children,
whereas L2L operator combines the approximations at different
scales through one breadth-first traversal.
Lemma 1: Hermite-to-local (H2L) translation operator (Lemma 2.2 in
[8]): Given a reference node R, a query node Q, and the Hermite
expansion centered at a centroid xR of R: G(xq) =

∑

α≥0
Aαhα

(

xq−xR√
2h2

)

,

where Aα = 1
α!

(

xr−xR√
2h2

)α, the Taylor expansion of the Hermite expansion
at the centroid xQ of Q is given by: G(xq) =

∑

β≥0
Bβ

(

xq−xQ√
2h2

)β where Bβ =

(−1)β

β!

∑

α≥0
Aαhα+β

(

xQ−xR√
2h2

)

.

Lemma 2: Hermite-to-Hermite (H2H) translation operator: Given the
Hermite expansion centered at a centroid xR′ in a reference node R′:
G(xq) =

∑

α≥0
A′

αhα

(

xq−xR′√
2h2

)

, this same Hermite expansion shifted to a new

location xR of the parent node R is given by: G(xq) =
∑

γ≥0
Aγhγ

(

xq−xR√
2h2

)

,

where Aγ =
∑

0≤α≤γ

1
(γ−α)!A

′
α

(

xR′−xR√
2h2

)γ−α.

Lemma 3: Local-to-local (L2L) translation operator: Given a Taylor
expansion centered at a centroid xQ′ of a query node Q′: G(xq) =
∑

β≥0
Bβ

(

xq−xQ′√
2h2

)β, the Taylor expansion obtained by shifting this ex-
pansion to the new centroid xQ of the child node Q is: G(xq) =
∑

α≥0

[

∑

β≥α

β!
α!(β−α)!Bβ

(

xQ−xQ′√
2h2

)β−α
]

(

xq−xQ√
2h2

)α.

Since we cannot store an infinite number of coefficients, we incur an error in approximation
summarized below:
Lemma 4: Error Bound for Truncating an Hermite Expansion (as presented in [8, 3]) Given an Hermite
expansion of a reference node R about its centroid xR: G(xq) =

∑

α≥0
Aαhα

(

xq−xR√
2h2

)

where

Aα =
NR
∑

r=1

1
α!

(

xr−xR√
2h2

)α, the maximum error due to truncating the series after the first pD term for a fixed

query point xq is |εDH(p)| = NR

(1−r)D

D−1
∑

k=0

(

D
k

)

(1 − rp)k
(

rp√
p!

)D−k for which ∀xr ∈ R, ||xr − xR||∞ ≤ rh where
r < 1.
Lemma 5: Error Bound for Truncating a Local Expansion: Given the following Taylor expansion about
the centroid xQ of a query node Q: G(xq) =

∑

β≥0
Bβ

(

xq−xQ√
2h2

)β where Bβ = (−1)β

β!

∑

α≥0
Aαhα+β

(

xQ−xR√
2h2

)

and Aα’s
are the Hermite coefficients of the expansion centered at the reference centroid xR, truncating the
series after pD terms satisfies the error bound |εDL(p)| = NR

(1−r)D

D−1
∑

k=0

(

D
k

)

(1 − rp)k
(

rp√
p!

)D−k where ∀xq ∈ Q,
||xq − xQ||∞ ≤ rh for r < 1.
Lemma 6: Error Bound for H2L Operator: A truncated Hermite expansion centered about the centroid
xR of a reference node R: G(xq) =

∑

α<p
Aαhα

(

xq−xR√
2h2

)

has the following Taylor expansion about the

centroid xQ of a query node Q: G(xq) =
∑

β≥0
Cβ

(

xq−xQ√
2h2

)β where Cβ = (−1)|β|

β!

∑

α<p
Aαhα+β

(

xQ−xR√
2h2

)

. Truncating

the series after pD terms satisfies the error bound |εH2L(p)| = NR

(1−2r)2D

D−1
∑

k=0

(

D
k

)

((1 − (2r)p)2)k

(

((2r)p)(2−(2r)p)√
p!

)D−k for which ∀xq ∈ Q, ||xq − xQ||∞ ≤ rh, and ∀xr ∈ R, ||xr − xR||∞ ≤ rh where r < 1
2.

Algorithm Description
buildInternal(R)
n = empty node
{R1, R2} = Partition R into two
n.left = buildReferenceTree(R1)
n.right = buildReferenceTree(R2)
n.mcoeffs = H2H
(n.left .mcoeffs, n.left .xR, n.xR)

n.mcoeffs = n.mcoeffs + H2H
(n.right .mcoeffs, n.right .xR, n.xR)

return n

buildLeaf(R)
n = empty node
n.mcoeffs = Compute the truncated

Hermite series of order PLIMIT using
each xr ∈ R, centered about xR

return n

buildReferenceTree(R)
if size(R) is below leaf threshold

return buildLeaf(R)
else

return buildInternal(R)

bestMethod(Q, R,maxerr)
if R.maxside ≥ 2h, pDH = ∞
else
pDH = the smallest 1 ≤ p ≤ PLIMIT such that
εDH(p) ≤ maxerr , otherwise pDH = ∞

if Q.maxside ≥ 2h, pDL = ∞
else
pDL = the smallest 1 ≤ p ≤ PLIMIT such that
εDL(p) ≤ maxerr , otherwise pDL = ∞

if max(Q.maxside, R.maxside) ≥ h, pH2L = ∞
else
pH2L = the smallest 1 ≤ p ≤ PLIMIT such that
εH2L(p) ≤ maxerr , otherwise pH2L = ∞

cDH = NQpD
DH , cDL = NRpD

DL, cH2L = p2D
H2L, cDirect = DNQNR

c = min(cDH , cDL, cH2L, cDirect)
if c = cDH , return {DH , pDH , εDH(pDH)}
if c = cDL, return {DL, pDL, εDL(pDL)}
if c = cH2L, return {H2L, pH2L, εH2L(pH2L)}
return {DIRECT,∞,∞}

DFGTHBase(Q, R)
for each xq ∈ Q

for each xr ∈ R

c = Kh(||xq − xr||), Gmin
q + = c,

Gmax
q + = c, Gest

q + = c

Gmax
q − = NR

Gmin
Q = min

q∈Q
Gmin

q , Gmax
Q = max

q∈Q
Gmax

q

DFGTH(Q, R)
dl = NRKh(δ

max
QR), du = NRKh(δ

min
QR) − NR

m = Kh(δ
min
QR) − Kh(δ

max
QR)

NT = NR

(

N |Kh(δmin
QR

)−Kh(δmax
QR

)|

2εφmin
Q

− 1
)

// Try finite-difference pruning.
if m ≤ 2ε

N
(Gmin

Q + dl)
Gmin

Q + = dl, Gmax
Q + = du,

Gest
Q + = 0.5(dl + du + NR), return

// Otherwise, try multipole-type pruning.
else
{m, p, εFGT} = bestMethod(Q, R, εNR

N
Gmin

Q)
if m = DH

for each xq ∈ Q

Gest
q + = EVALM(R.mcoeffs, p, xR, xq)

else if m = DL

Q.lcoeffs+ = DIRECTL(∀xr ∈ R, p, xQ)
else if m = H2L

Q.lcoeffs+ = H2L(R.mcoeffs, p, xR, xQ)
if m 6= DIRECT

Gmin
Q + = dl, Gmax

Q + = du, return
if leaf(Q) and leaf(R), DFGTHBase(Q, R)
else

DFGTH(Q.left ,R.left), DFGTH(Q.left ,R.right)
DFGTH(Q.right ,R.left), DFGTH(Q.right ,R.right)

Using both finite-difference and multipole prunings requires an extra field in each
query node Gest

Q storing contributions from reference nodes obtained by
finite-difference pruning and direct Hermite evaluations. The contributions from
Taylor coefficients obtained via direct local accumulation and H2L translation
opeator will be accounted for during the post-processing step.
The algorithm consists of three parts: constructing the query and the reference tree
(preprocessing), invoking the recursive function DFGTH, then combining all
contributions in a single breadth-first traversal sweep (post-processing).
In preprocessing, we construct trees for the query and the reference dataset. For
the reference tree, the Hermite moments of order PLIMIT is pre-computed. We
used PLIMIT = 8 for D = 2, PLIMIT = 6 for D = 3, PLIMIT = 4 for D = 5.

Experimental Results and Conclusion
We studied the runtime performance of five algorithms on five real-world datasets
(scaled to fit in [0, 1]D hypercube) for kernel density estimation at every query point
with a range of bandwidths, from 3 orders of magnitude smaller than to three orders
larger than optimal, according to the least-squares cross-validation score [10]. Our
new method has the minimum time requirement for cross-validation over all
bandwidth scales, but is suited only for low-dimensional problems (1 to 3). a b

Algorithm \ scale 0.001 0.01 0.1 1 10 100 1000
sj2-50000-2 (astronomy: positions), D = 2, N = 50000, h∗ = 0.00139506

Naive 301.696 301.696 301.696 301.696 301.696 301.696 301.696
FGT out of RAM out of RAM out of RAM 3.892312 2.01846 0.319538 0.183616
IFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive 7.576783
DFD 0.837724 1.087066 1.658592 6.018158 62.077669 151.590062 1.551019
DFGT 0.849935 1.11567 4.599235 72.435177 18.450387 2.777454 2.532401
DFGTH 0.846294 1.10654 1.683913 6.265131 5.063365 1.036626 0.68471

colors50k (astronomy: colors), D = 2, N = 50000, h∗ = 0.0016911
Naive 301.696 301.696 301.696 301.696 301.696 301.696 301.696
FGT out of RAM out of RAM out of RAM > 2×Naive > 2×Naive 0.475281 0.114430
IFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive 7.55986
DFD 1.095838 1.469454 2.802112 30.294007 280.633106 81.373053 3.604753
DFGT 1.099828 1.983888 29.231309 285.719266 12.886239 5.336602 3.5638
DFGTH 1.081216 1.47692 2.855083 24.598749 7.142465 1.78648 0.627554

edsgc-radec-rnd (astronomy: angles), D = 2, N = 50000, h∗ = 0.00466204
Naive 301.696 301.696 301.696 301.696 301.696 301.696 301.696
FGT out of RAM out of RAM out of RAM 2.859245 1.768738 0.210799 0.059664
IFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive 7.585585
DFD 0.812462 1.083528 1.682261 5.860172 63.849361 357.099354 0.743045
DFGT 0.84023 1.120015 4.346061 73.036687 21.652047 3.424304 1.977302
DFGTH 0.821672 1.104545 1.737799 6.037217 5.7398 1.883216 0.436596

mockgalaxy-D-1M-rnd (cosmology: positions), D = 3, N = 50000, h∗ = 0.000768201
Naive 354.868751 354.868751 354.868751 354.868751 354.868751 354.868751 354.868751
FGT out of RAM out of RAM out of RAM out of RAM > 2×Naive > 2×Naive > 2×Naive
IFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive
DFD 0.70054 0.701547 0.761524 0.843451 1.086608 42.022605 383.12048
DFGT 0.73007 0.733638 0.799711 0.999316 50.619588 125.059911 109.353701
DFGTH 0.724004 0.719951 0.789002 0.877564 1.265064 22.6106 87.488392

bio5-rnd (biology: drug activity), D = 5, N = 50000, h∗ = 0.000567161
Naive 364.439228 364.439228 364.439228 364.439228 364.439228 364.439228 364.439228
FGT out of RAM out of RAM out of RAM out of RAM out of RAM out of RAM out of RAM
IFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive
DFD 2.249868 2.4958865 4.70948 12.065697 94.345003 412.39142 107.675935
DFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive
DFGTH > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive

We have already investigated a more efficient O(Dp) expansion scheme (advocated
in [11]) in [9]. Beyond statistical application, the dual-tree multipole methods appear
to be the state-of-the-art for the corresponding kernel summation problem in
computational physics.

aTimes which include preprocessing costs are measured in CPU seconds on a dual-processor AMD Opteron 242 machine with 8 Gb of main
memory and 1 Mb of CPU cache. All the codes that we have written and obtained are written in C and C++, and was compiled under -O6
-funroll-loops flags on Linux kernel 2.4.26. We have limited all datasets to 50K points, and set ε = 0.01. When any method fails to achieve the
error tolerance in less time than twice that of the naive method, we give up.

bFGT [8] and IFGT [11] codes were obtained from the authors’ websites. For the FGT, the absolute deviation τ is used as an estimate for ε, and
we keep halving τ until the relative error bound ε is met for all query points. For the IFGT, which has multiple parameters which must be tweaked
simultaneously, an automatic scheme was created, based on the recommendations given in the paper and software documentation: For D = 2, use
p = 8; for D = 3, use p = 6; set ρx = 2.5; start with K =

√
N and double K until the error tolerance is met. When this failed to meet the tolerance, we

resorted to additional trial and error by hand, again using knowledge which is unavailable in practice. The costs of parameter selection for these
methods in both computer and human time is not included in the table. DFD refers to the depth-first dual-tree finite-difference method [6]. DFGT
replaces finite-difference pruning in place of multipole pruning utilizing three translation operators, while DFGTH uses both finite-difference and
multipole prunings.

