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Problem

In this paper, we propose new computational techniques for
efficiently approximating the following sum for each query
point qi ∈ Q:

Φ(qi,R) =
∑

rj∈R

e−||qi−rj||
2/(2h2) (1)

where R is the reference set; each reference point is associated
with a Gaussian function with a smoothing parameter h (the
’bandwidth’). This form of summation is ubiquitous in many
statistical learning methods:
•Kernel density estimation
•Kernel regression
•Gaussian process regression
•Radial basis function networks
•Spectral clustering
•Support vector machines
•Kernel PCA
Cross-validation in all of these methods require evaluating
Equation 1 for multiple values of h. Kernel density estimation,
for example, requires |R| density estimate based on |R| − 1
points, yielding a brute-force computational cost scaling
quadratically (that is O(|R|2)).

Error Bounds

Due to expensive computational cost, many algorithms
approximate the Gaussian kernel sums at the expense of
reduced precision, two of which is shown below:
Definition 0.1. An algorithm guarantees ε absolute error
bound, if for each exact value Φ(qi,R) for qi ∈ Q, it computes
Φ̃(qi,R) such that

∣∣∣Φ̃(qi,R)− Φ(qi,R)
∣∣∣ ≤ ε.

Definition 0.2. An algorithm guarantees ε relative error bound,
if for each exact value Φ(qi,R) for qi ∈ Q, it computes Φ̃(qi,R) ∈ R

such that
∣∣∣Φ̃(qi,R)− Φ(qi,R)

∣∣∣ ≤ ε |Φ(qi,R)|.

Our Contributions

We propose a better Gaussian summation algorithm that
overcomes the curse of dimensionality:
•Extends an earlier work [8] to guarantee “per-query”

estimates using the following new error bound criterion:
Definition 0.3. An algorithm guarantees (1− α) probabilistic
ε relative error bound, if for each exact value Φ(qi,R) for
qi ∈ Q, it computes Φ̃(qi,R) ∈ R, such that with at least
probability 0 < 1− α < 1,

∣∣∣Φ̃(qi,R)− Φ(qi,R)
∣∣∣ ≤ ε |Φ(qi,R)|.

•A new tree structure called subspace tree for reducing the
computational cost of each distance computation inspired
by an earlier work [11].
•Extensive experimental results up to 89 dimensional

datasets for the first time.

Algorithm

MCMM(Q, R, β)
if CANSUMMARIZEEXACT(Q, R, ε)

SUMMARIZEEXACT(Q,R)
else if CANSUMMARIZEMC(Q, R, ε, β)

SUMMARIZEMC(Q, R, ε, β)
else
if Q is a leaf node

if R is a leaf node
MCMMBASE(Q, R)

else
MCMM

(
Q, RL, β

2

)
, MCMM

(
Q, RR, β

2

)

else
if R is a leaf node

MCMM(QL, R, β), MCMM(QR, R, β)
else

MCMM
(
QL, RL, β

2

)
, MCMM

(
QL, RR, β

2

)

MCMM
(
QR, RL, β

2

)
, MCMM

(
QR, RR, β

2

)

Subspace Tree

We use principal component analysis for building a
subspace for each node.
•Leaf node: computed using PCABASE which can use

the exact PCA [2] or a stochastic one [1].
• Internal node: the subspaces of the child nodes are

approximately merged using the MERGESUBSPACES
function [7].

BUILDPCATREE(P)
if CANPARTITION(P)
{PL,PR} ← PARTITIONSET(P)
N ← empty node
NL← BUILDPCATREE(PL)
NR ← BUILDPCATREE(PR)
N.S ← MERGESUBSPACES(NL.S, NR.S)

else
N ← BUILDPCATREEBASE(P)
N.S ← PCABASE(P)
N.Pproj ← PROJECT(P, N.S)

return N

Experimental Results and Conclusion

We evaluated our algorithm a on six real-world datasets (scaled to fit in [0, 1]D hypercube) for kernel density estimation at
every query point with a range of bandwidths, from 3 orders of magnitude smaller than to three orders larger than optimal,
according to the least-squares cross-validation score [12].
•On low dimensional datasets (below 6 dimensions), the algorithm using series-expansion based bounds (MCMM

algorithm with p = 1 value) gives two to three times speedup compared to our approach that uses Monte Carlo sampling.
•From 7 dimensions and beyond, our probabilistic algorithm (p = 0.9) consistently performs better than the algorithm using

exact bounds by at least a factor of two.
•Our new method has the minimum time requirement for cross-validation over all bandwidth scales over the past

work [3, 4, 6, 5, 10, 9]. We have already developed an improved version of our algorithm.
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bio5−rnd (drug activity) D = 5, N = 50000, h* = 0.000567161
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pall7−rnd, D = 7, N = 50000, h* = 0.00131865
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covtype−rnd, D = 10, N = 50000, h* = 0.0154758
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CoocTexture−rnd, D = 16, N = 50000, h* = 0.0263958
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CorelCombined−rnd, D = 89, N = 50000, h* = 0.0512583
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