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Kernel Summations

Given two D-dimensional point sets Q and R, compute
Vq € Q,P(q) = >, wik(q,r;) where w; € R.
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e The computational bottleneck ubiquitous in many machine learning
methods.

e A kernel function £ : X x X — R defines a similarity measure between a

pair of objects.
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Example: Gaussian {K; ;}1<; j<y = e lemnll/2h)
Kernel summations computes approximately average similarity.

Distributed Data

If the disk space is cheap, why can’t we store everything on one machine?

POF = Pl P5 P6 I P7
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e More cost-effective to distribute data on a network of less powerful
nodes than storing everything on one powerful node.

e Allows distributed query processing for high scalability.

e In some cases, all of the data cannot be stored on one node due to
privacy concerns.

Scaling Kernel Methods
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k(xj,x;)

The computational cost seems super-quadratic in the number of points.
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Contributions

Parallel dual-tree methods using a distributed multidimensional tree such
as kd-trees or metric trees. Uses distributed and shared memory
parallelism using standards such as MPI, OpenMP, Intel TBB from the
ground-up.
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Parallel Indexing of Multidimensional Binary Trees

log p rounds of shuffling for building the distributed tree. Utilizes both
distributed memory (MPI) and shared memory (OpenMP/Intel TBB)
parallelism.
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Parallel Computation Using Distributed Tree

Pre-divide and spawn off independent computations. Each query subtree

grabs necessary reference data.
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Kernel Summations in Scientific Applications

Sloan Digital Sky Survey collects around 200 GB data per day.
Kernel density estima-
tor: map > w;k(q, 1))
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(Gaussian process regres-
sion: K1y

Large-scale redshift prediction of galaxies and quasars.

Experimental Results

Strong scaling results on a 10 million/4-dimensional subset of the SDSS
dataset. Computed kernel density estimates using the Epanechnikov
kernel with h = 0.000030518 (chosen by the plug-in rule) and e = 0.1. Raw
numbers in seconds: (13.52, 339.36, 2371), (7.41, 24.38, 244), (2.93,
2.78, 98.78), (1.10, 0.27, 39.51)

Overall strong scaling
Parallel efficiency
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Future Work

e Distributed computation on unreliable network connections.
e GPGPU-based acceleration.
e Parallelization of higher-order interactions including n-point correlation.




