
A Distributed Kernel Summation Framework for General Dimension Machine Learning
Best Paper Award at SIAM International Conference on Data Mining 2012 (Anaheim, CA)

Dongryeol Lee (drselee@gmail.com), Richard Vuduc (richie@cc.gatech.edu), Alexander G. Gray (agray@cc.gatech.edu)
Georgia Institute of Technology

Kernel Summations

Given two D-dimensional point sets Q and R, compute
∀q ∈ Q,Φ(q) =

∑
rj∈R

wjk(q, rj) where wj ∈ R.

•The computational bottleneck ubiquitous in many machine learning
methods.
•A kernel function k : X × X → R defines a similarity measure between a

pair of objects.
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Example: Gaussian {Ki,j}1≤i,j≤N = e−||xi−xj||
2/(2h2)

Kernel summations computes approximately average similarity.

Distributed Data

If the disk space is cheap, why can’t we store everything on one machine?
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•More cost-effective to distribute data on a network of less powerful
nodes than storing everything on one powerful node.
•Allows distributed query processing for high scalability.
• In some cases, all of the data cannot be stored on one node due to

privacy concerns.

Scaling Kernel Methods
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The computational cost seems super-quadratic in the number of points.

Contributions

Parallel dual-tree methods using a distributed multidimensional tree such
as kd-trees or metric trees. Uses distributed and shared memory
parallelism using standards such as MPI, OpenMP, Intel TBB from the
ground-up.
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Parallel Indexing of Multidimensional Binary Trees

log p rounds of shuffling for building the distributed tree. Utilizes both
distributed memory (MPI) and shared memory (OpenMP/Intel TBB)
parallelism.
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Parallel Computation Using Distributed Tree

Pre-divide and spawn off independent computations. Each query subtree
grabs necessary reference data.
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Kernel Summations in Scientific Applications

Sloan Digital Sky Survey collects around 200 GB data per day.
Kernel density estima-

tor: map
q∈Q

∑
rj∈R

wjk(q, rj)

Nadaraya-Watson:

map
q∈Q

∑
(rj,yj)∈R

wjyjk(q,rj)∑
rj∈R

wjk(q,rj)

Gaussian process regres-
sion: K−1y

Large-scale redshift prediction of galaxies and quasars.
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Experimental Results

Strong scaling results on a 10 million/4-dimensional subset of the SDSS
dataset. Computed kernel density estimates using the Epanechnikov
kernel with h = 0.000030518 (chosen by the plug-in rule) and ε = 0.1. Raw
numbers in seconds: (13.52, 339.36, 2371), (7.41, 24.38, 244), (2.93,
2.78, 98.78), (1.10, 0.27, 39.51)
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Overall strong scaling

Tree building Tree walk Computation

Future Work

•Distributed computation on unreliable network connections.
•GPGPU-based acceleration.
•Parallelization of higher-order interactions including n-point correlation.


